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ABSTRACT

W

This thesis develops a new computer performance evaluation
structure called the time-extended Petri net which retains
logical synchronization and concurrency characteristics of
systems. Cost effectiveness is one of the important consi-
derations together with an evaluation of how it works. The
overall objective is to obtain a model to determine the
automatic data processing dollar's efficiency.
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PREFACE

Computer performance evaluation (CPE) is primarily a matter
of econamics. Whereas some evaluate a modeling methodology in
theoretical terms, the CPE analyst must ask gquestions of more direct
application: "Does it work?"; "How much will it cost?" CPE tends
to be a pragmatic discipline aimed at having a direct impact upon
the Automatic Data Processing (ADP) dollar's efficiency.

The relationship between ADP and CPE costs has fostered
growing comuitment in government and industry to the development of
effective CPE tools, This commitment has resulted in CPE's trans-
formation into a multimillion dollar industry and an important
camputer science research discipline. Not many years ago, performance
measurement and analysis was a "seat of the pants" endeavor to all
but a small ooterie of experts. Today, sophisticated packaged tools
exist which allow the trained technician to easily and accurately
model and evaluate many aspects of a computer system's performance.

Despite the econamic significance and considerable progress
which the performance evaluation cammunity has enjoyed during recent
years, CPE researchers have still had difficulty responding to the
challenges posed by new system architectures and operating philos-
ophies: CPE tools are needed which can be used to develop accurate
deterministic models of parallel systems at a small cost relative to
the system cost. Current CPE tools do not adequately meet these

iii
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challenges. For example, as this Thesis points out, the queueing
network model is a user-oriented, inexpensive modeling tool. Yet,

the basic assumptions of the model make it an inadequate tool for
studying many deterministic parallel systems. When these inadequacies
became important factors in a study, the CPE analyst must either
accept an approximate solution or use other more expensive and more
curbersome modeling methods, such as discrete simulation.

Because of the importance of parallel systems within the
ADP user community, there is a strong need for a cost-effective,
data-driven performance modeling methodology which can faithfully
represent deterministic behavior, process blocking, and the holding
of multiple resources by a single process. At least one study
[Browne, et. al., 1973) has shown that currently available tools are
inadequate due to their expense, difficulty of use, or inherent
modeling limitations; in some cases these limitations are significant
constraints.

The objective of this Thesis is to introduce a modeling
methodology which meets the needs described above. ®hile it would
be naive, if not presumptuous, to imply an ultimate solution, the
methodology is demonstrated to be useful in analyzing the perform-
ance of a sophisticated disk subsystem that can only be approx-
imated by queueing networks. The capabilities of the model
demonstrated by this example problem seem to indicate that the
Time-Extended Petri Net (TEPN) offers a fresh and useful tool for

cost-effective CPE.
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CHAPTER 1

INTRODUCTION

This Thesis introduces the Time-Extended Petri Net (TEPN)
as a basis for computer system performance modeling, and demon-
strates the TEPN's usefulness in modeling a specific camputer
system problem. We suggest fram preliminary modeling results that
the TEPN model is extendable to more general application in the
performance evaluation of both system and algorithm architectures.

The TEPN model resulted from a project whose goal was to
define and implement a modeling system which would:

(1) represent the time-resolved behavior of a set of

Geterministic interacting parallel processes;
(2) represent the holding of multiple resources; and,
(3) allow specification of models as data structures
rather than as pu:ograms.l
when properly implemented, this system cambines much of
the power and flexibility of programmed simulation models with the
ease of use of queueing models, resulting in a powerful and cost-

effective modeling tool.

1 Queueing models and System Program Graphs are examples of models
‘ vhich are specified as data structures which may then be analyzed
by a pre-campiled program which merely "executes" the structure;
discrete language simulation models are specified by a camputer
I program and the model itself must be compiled and validated as a
computer program as well as a model.
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The TEPN is constructed from the general Petri net by

(1) associating type and information content with tokens;

(2) associating with each place a set of functions and
state information derived from the tokens at that place; and,

(3) associating input and output templates with each
transition to govern the firing of a transition and flow of infor-
mation through the network.

The deterministic properties of the TEPN structure remain
unchanged fram those of the general Petri net, if suitable
restrictions on the information content of tokens and the range of

! the functions are made. This combination of Petri net properties
and the above extensions results in a model whose power of repre-

sentation and mode of definition meet the goals stipulated above.

Thesis Organization

! Other than the work of Noe and Nutt [Noe and Nutt, 1972
and 1973], the author knows of no major documented research into
using the Petri net as the basis for a CPE tool. However, the

reader will be helped by a familiarity with the relationship of

the TEPN to other major CPE modeling methods, and this background
information is presented in Chapter II.

Chapter III supports the TEPN conceptual definition by
presenting some basic definitions of the Petri net, upon which the




TEPN model is based and briefly describes other major research

concerned with adapting the Petri net as a CPE tool.

Chapters IV and V define and describe the basic concepts
and the implementation of the TEPN model, thereby presenting the
bulk of the "new" material contained in this Thesis. The reader
already familiar with Petri nets and other camputer performance
evaluation (CPE) modeling methods may want to begin this Thesis
with these chapters.

Chapter VI illustrates the usefulness of the TEPN system
in analyzing the performance of a complex disk subsystem.

Chapter VII concludes the Thesis with observation con-
cerning the TEPN's future as a CPE tool and suggests same directions

for future research.

i
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CHAPTER II

SURVEY OF CPE MODELING TECHNIQUES

This chapter suverys the three major CPE modeling techniques
in documented use by the CPE community., We discuss first the discrete
simulation methodology, then analytic queueing network models, and
finally trace-driven models., Although none of these techniques employ
the Petri net, their understanding is fundamental to understanding

the objective behind the TEPN network.

Discrete Simulation Modeling

Discrete camputer system simulation involves the description

of a computer system by a computer probram and the simulation of the
interactions within that system as they occur over a discrete time

interval, The level of detail of the representation within a discrete

simulation model may vary from simulated interactions to a one-to—one

mapping of actual system interactions depending upon the camputer

language used and the problem's ::wequirement:.s.2

Most discrete simulation languages were developed in the

s 1950's and 1960's as tools to study camplex processes and system

2 The kind of problem generally determines the required and/or

desired level of model detail, as well as deciding whether the

model should be deterministic (i.e., no random variability) or

nondeterministic. For example, an analysis of the performance of

a new logic circuit would normally require a very detailed model;

a logic~circuit level model of a large multiprocessor system

would be neither feasible nor useful. Similarly, the logic circuit
analysis would probably require a determministic model, whereas

l random variability is an important part of most large system models.

4
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design. One of the earliest and best-known simulation languages is
IBM's GPSS [Efron and Gorden, 1969]. This language is problem and
user centered; it has features which allow the user to describe the
flow of work through the processes which are to be simulated in a
flowchart-like format. While not used extensively for CPE, the GPSS
language is still very popular in many other areas of camputer-based
simulation.3

The most significant special-purpose simulation language
for CPE is the Extendable Computer System Simulator (ECSS) [Nielson,
1969]. Developed by RAND Corporation to aid in studies of computer
hardware and software systems, ECSS is a superset of the SIMSCRIPT Il
[Kiviat, et. al., 1969] programming language with several embedded
features uniquely required when modeling computer systems, ECSS has
been and continues to be applied to large CPE problems, particularly
within the Federal Government,

Another type of specialized discrete simulation tool is
the packaged simulator, of which the Computer Assisted System Eval-

uator (CASE) [CASE Manual, 1962] is the most notable example. CASE
is a prefabricated model of an arbitrary computer system defined
at run time by the user. The input to the package consists of a
configuration description and a workload description, while the

3 CPE uses of GPSS and most other simulation languages (to simulate
camputer system performance) comprise a relatively small percentage
of all simulation apphcaums, as evidenced by the papers contained
in the proceedings of the various simulation conferences (proceedings
of major simulation conferences are available fram the Association
for Computing Machinery (ACM) and the Institute of Electronics and
Electrical Engineers (IEEE) ).




output is a series of reports on the performance of each part of the
system as a whole, The package contains intrinsic information
concerning the performance characteristics of each piece of "legal”
hardware, indexed by make, model number, and vendor. To cover the
software impacts upon system performance, CASE not only contains
standard factors relevant to the major operating systems it
"supports,” but also allows the user to specify many parameters
which are normally part of the operating system-generation process.
Because of the detailed simulation intrinsic to a CASE simulation,
the package was used extensively for a number of years. Wwhile CASE
continues to be useful in many CPE studies, the extreme camwplexities
of systems with a high degree of parallelism have challenged the
validity of many results of CASE simulations of such systems.

Discrete simulation modeling's primary advantage is the
flexibility of the programming languages available as a medium for
building the models. With the proper choice of the host language,
one can build a comprehensive simulation model that faithfully repre-
sents virtually any system, Furthermore, since the size of a model
is only limited by the capability of a machine to handle large
programs, this technique may be used to model deterministic systems
(or nondeterministic systems) which might be too large to model
effectively by other techniques.

The major drawback of the discrete simulation language
model is its high cost, both in development and use., The
development costs are generally high for two reasons. First,




the simulation model itself represents a significant piece of soft-
ware. Since software development is labor intensive, the costs of
simply writing the programs tend to be high., Furthermore, if the
systems being simulated are complex then the program logic will also
be camplex, making program debugging difficult, The second reason
for high development costs is the need for careful model verification
and validation. Even if the software is campletely debugged, it is
often difficult to verify that the program faithfully evaluates the
model designed for the customer., There is no guarantee that the
model as designed is truly representative of the system being studied.
Therefore, before the model is used in a production mode, careful

validation is necessary to insure useful results., For a large system

model, this process can take several weeks, thereby driving costs

even higher., The final cost factor is the cost of production use.
while the computer resources required to run the model depend upon the
model's level of detail and size, even a small, high-level model can
require many central processer time units for each unit of simulated
time, For example, if an analyst needs to simulate ten minutes of
camputer system time on the system being modeled and studied, a simula-

tion run may easily require five or six times that in CPU time alone.

Furthermore, since many simulation languages require very large run-

time systems, even a relatively small model may require a larve

memory allocation — and correspondingly increased resource costs.,
Degpite the high costs involved, the capability of building

large deterministic models of camputer systems is almost unique

—-
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to the discrete simulation methodology. Thus, simulation models have
found wide application in almost every sector of the camwmnity of
large-scale computer users. ([MacDougall, 1970] is an excellent survey

paper discussing computer system simulation in more detail than is

appropriate for this Thesis. This paper also contains an extensive
annotated bibliography.). However, though used, discrete simulation
models are often too expensive for use in studying less expensive
systems, a fact which has resulted in the decreasing emphasis of
discrete simulation in favor of analytic queueing models, with a

corresponding sacrifice in flexibility and determinism,

Analytic Modeling

Within the context of this paper, analytic modeling refers

to a technique in which the system being modeled is represented

by a mathematical, rather than a simulation, model. 1In this
approach, the analyst seeks to find a mapping to the interactions
generic from the system under study to a set of mathematical formulae
which can be analytically solved. A large number of techniques fall
into the analytic modeling category, including many methods used in
operations research, such as linear and integer programming, re-
gression analysis, and queveing network models. Brice ([Brice, 1973]
discusses mathematical models in detail as they relate to CPE, and
the reader is referred to his work for more conceptual background.
In this thesis, however, the only analytical technique which will
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be discussed is the queueing network model.

The queueing network modeling methodology was originally
developed within the operations research canmunity as a means of
analyzing systems which display certain characteristics of random
variability. 1In 1963, Jackson [Jackson, 1963) discovered a
powerful technique for analytically solving queueing network models
which met certain criteria. These concepts were independently
discovered a few years later by Gordon and Newall [Gordon and Newall,
1967]. Between 1970 and 1976, researchers within the CPE community
extended the known concepts of the queueing network model and
developed what is now a powerful analytic technique for CPE. As a
result of these developments, both the research and industrial
cammunities have been able to develop efficient, user-oriented
software packages for automated queueing network analysis, making
the queueing network model the most important CPE modeling technique
in use today.

The greatest advantage of the queueing network model is its
simplicity., The concepts are well-defined and may reguire minimal
training to apply them. User-oriented systems exist which can
run on most large computer systems; and models of even large multi-
processor systems can be constructed, tested, and validated in a

l very short time compared to the time required to model the same
system using discrete simulation. Also, since the solution is
analytic rather than experimental, gueueing network models often

l require less camputer resources than other CPE methods might require
to obtain comparable results, This inherent simplicity of the
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queueing model network methodology has made queueing network
modeling by far the least expensive modeling method discussed in
this thesis.

Despite the utility and simplicity of the gqueueing network
model, the model is limited in three areas: (1) the model is probabi~
listic in nature and unable to model deterministic processes; (2) the
model cannot exactly represent certain types of problems inherent to
many parallel processes; and (3) the validity of the model is depen-
dent upon the representation of the data used to generate the
probabilistic functions upon which the model is based. The first
limitation causes two difficulties, First, there are some problens,
such as those dealing with logic.design and hardware architecture
analysis, which require detailed, deterministic analysis., These
problems are not easily solved using queueing networks. Secondly,
there are many CPE problems for which it would be desirable to build
a model which could be either deterministic or probabilistic, depen-
ding upon the data available and the abjectives of the analysis,

The second limitation area is caused by several inherent
characteristics of the queueing model pointed out by [Browne, et al,
1973], who experienced difficulties when modeling a disk input/output
subsystem with the disk SEEK:READ/WRITE overlap feature. The
difficulties included: (1) queueing networks only appraximate
the simultaneous holding of multiple resources (such as when both
a controller and a disk unit must be held by the same transaction,
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though not necessarily for the same period of time); (2) queueing
networks can only approximate problems encountered by process
blocking {such as might happen when a disk seek has been initiated
by a controller but is busy when the seek is camplete, blocking
the original transaction from completion); and (3) queueing
networks are limited in capability to model condition-dependent

paths in which the conditions are dependent upon more than the
location in the network (this is a result of the dependance of
much of gueueing network theory upon the memoryless property of
Markovian systems.

The final area of limitation, that the validity of the
model is dependent upon the validity of the probabilistic functions
used, is common to all probabilistic systems. Some problems have
been resolved by the discovery that some of the cammon functions
are relatively insensitive to inaccuracies in the data used
to determine functional parameters (such as the mean of an

exponential or negative exponential function). Wwhile few researchers

would claim that one could depend upon the results of a queueing
network model for exact accuracy, many experiments have shown that
a well-designed queueing network model can be assumed to be accurate
to within ten to fifteen percent, or better. Furthermore, by com-
bining the results of queueing network analysis which such statis-
tical techniques as analysis of variance and confidence intervals,
CPE practitioners have shown the queueing network model to be a
useful tool for those problems which it is capable of modeling.
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Trace-Driven Modeling

Trace-driven modeling is “a technique which combines
measurement and simulation for the purpose of evaluating and pre-
dicting the performance of systems" [Sherman, 1972]., 1In particular,
a trace-driven model is one which may be driven by éither actual
workload data or specially-massaged trace data from the operational
history of the system under study. For example, a queueing model
could be designed as a trace-driven model if, instead of having
the workload represented by a stochastic process, the input to the .
network were fed directly from a system log of actual transaction
times, Such a modeling tool has obvious application in a variety
of performance analysis problems, particularly in the analysis of
system algorithms or hardware configurations.

The most significant work in trace-driven models was that
of Anderson [Anderson, 1974], Sherman [Sherman, 1972], and Browne,
[Sherman and Browne, 1973; Sherman, Howard and Browne, 1975] between
1969 and 1974 at the University of Texas at Austin. The dissertations
of Anderson and Sherman are devoted to the development and use of
the trace-driven modeling concepts., Sherman demonstrated the useful-
ness of trace—driven modeling by building and using a trace-driven
FORTRAN simulation model of the University of Texas' UT2 CDC 6600
operating system., Anderson developed a unified trace-driven modeling
methodology based upon the System Program Graph (SPG). The SPG
is a graph-based representation technique which not only allows

the workload to drive the model directly, but also allows the model
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itself to be represented in terms of a data structure rather than
a computer program,

Both Anderson and Sherman demonstrated the primary advan-
tage of the trace-driven technique: the results are not subject
to either the smoothing or random behavior effects of using
stochastic methods since the inputs to the model are deterministic,
rather than stochastic. Since stochastic processes are built to
represent "average" behavior, these processes often complicate the
investigation of systems in which small pertubations are important

to system performance evaluation. The trace-driven model overcomes

most of these difficulties by using deterministic data.

A second advantage of trace-driven modeling is that the
i level of detail of the simulation results may be controlled by
varying the detail of the input data, rather than by redesigning and
reprogramming the model, which would be required by simulation or
queueing network models.

Finally, Sherman aobserved that the trace-driven model
results generally displayed high accuracy which could often be vali-

dated by straightforward means. This accuracy resulted in absolute, 1
rather than relative, measures of performance. In other words,
analysis of two algorithms could yield the absolute result that
algorithm A was, say, ten percent faster than algorithm B (for
the data given), rather than the relative result that algorithm A

was simply better than algorithm B,
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Despite these and other advantages, trace-driven modeling
has had only limited practical application. One key reason is that
the usefulness of the technique depends campletely upon the accuracy
of the trace data and the guality of the model that the trace data
drives. Accuracy of trace data, of course, is a problem not unique
to this methodology, since both discrete simulations and analytic
models are dependent upon the same data. The problem tends to be
more significant, however, with a trace-~driven model because the
trace—driven model tends to be more sensitive to minor pertubations
in the data, whereas the smoothing effect of stochastic processes
tends to eliminate the impact of these pertubations for other meth-
ods. The quality of the model that the trace data is driving is not
only a function of correct model architecture, but it is primarily
a function of the modeling capabilities of the model itself, For
example, if the model used is a queueing network model, the trace-
driven nature of the approach does not absolve the model fram all of
the limitations found with queueing network models.

Like the queueing model, the SPG method is limited in its
capability to model deterministic proesses, Furthermore, the SPG
model of a complex system may easily become urwieldy because of
the number of nodes included. These and other weaknesses have
resulted in very little application of the SPG or other similar
trace-driven modeling methods, although Anderson's and Sherman's
work have helped to lay an effective groundwork for the
development of the TEPN structure.
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CHAPTER III

DESCRIPTION OF THE PETRI NET MODEL

The Petri net is an abstract model of information flow
first proposed by Carl Petri in Germany, in 1964 [Petri, 1964].
The Petri net was first applied to the study of computer systems
by BHolt and Commoner [Holt, et.al., 1968; Commoner, et.al., 1971],
in 1968, and subsequently enjoyed considerable interest within the
Camputation Structures Group of Project MAC, from 1968 to 1975,
Since 1968, Petri nets have been studied and used both in university
and industrial environments to study and design circuits, algorithms,
systems, and other processes. In 1977, this research was the subject

of a survey paper published in the AOM Computing Surveys [Peterson,

1977], to which the reader is referred for more background information.

Definition of the Petri Net

Figure 3-1 is a graphical representation of a Petri net.

Figure 3-1 Example Petri Net
15
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Informally, the Petri net is a graph structure consisting of two

types of nodes, places (pictured by circles) and transitions (pic-
f tured by vertical bars), connected by directed arcs. Definition 3-1

formalizes the Petri net concepts pictured in Figure 3-1.

Definition 3-1. Petri Net

A Petri net is defined as a bipartite, directed graph
described by the four-tuple, C = (P,T,I,0), where,

P

{Pyr-v.sP 1, @ set of places, n20;

T = (tl,...,tm?, a set of transitions, m=0;
I is the transition input function, I:T—~2P
O is the transition output function, O:T—‘ZP; ard,

sets P and T are disjoint,

In this definition, the connecting arcs are defined by the transition

input and output functions, since, for each transition, the input

function will yield the set of places connected by arcs directed into

the transition, while the output function yields the set of places

connected to the transition by arcs directed away fram the transition,
Using this definition, the structure of the Petri net of

' : Figure 3-1 would be specified as follows:

v

' PNET=(P,T,1,0), where,

[ P = {P1,P2,P3,P4,P5,P6} T = {T1,T2,T3,T4}
1(T1) = {r1,P} O(T1) = {P3}

l I(T2) = {P3,P43 0(T2) = {P5}
I(T3) = {P5} o(T3) = {p63
I(T4) = {P6} O(T4) = (p2,pP4}




At this point, it is important to understand that the places and

transitions of a Petri net are primitive objects, with no associated

attributes, functions, or other special meaning,

Marked Petri Net Models

The Petri net structure may be used to represent the struc-
ture of information or execution flow in a process, but any study of
thé dynamic or state properties of a system requires the intro-
duction of another entity, the token.

A token is a dimensionless, uninterpreted object which may
"reside" at any place within the network. The number of tokens at a
given place is referred to as the marking, or state, of that place,
and the vector of markings of all places defines the marking, or
state, of the entire network.

Figure 3-2, below, is a marked Petri net, with tokens
being represented by dots within the marked places. This marking
would be specified by the following vector:

M=(,1,0,1 0, 0)
where,

Mi = the nunber of tokens currently residing at place i.

JEOye—
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Figure 3-2 Marked Petri Net

Disk Request arrives;
waits for controller
P

Controller allocated;
wait for requested disk

P3
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control ler i proggess

Figure 3-3 Interpreted Petri Net '
With Transition T1 Enabled '
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Interpreted Petri Net Models

If a Petri net is used to model a specific system, it is

necessary to assign a name or interpretation to each node of the

network, resulting in an interpreted Petri Net. This interpretation

then ascribes meaning not only to the nodes of the network but to
the network states, or markings. The net of Figure 3-2 could, for
example, be interpreted so as to represent a simple disk subsystem,
With this interpretation, shown on Figure 3-3, the marking above
might represent the state in which (a) there is one pending disk

requests and, (b) both a disk unit and a controller are available.

Execution of the Petri Met Model

when all of the places comprising a transition's input set
have a non-zero marking, the transition is said to became enableq,
ready to fire, or "happen." If a disk request "arrives" at place Pl
(from Figure 3-3), transition T1 will become enabled, and a firing
occurs.

A firing occurs deterministically when the specified tran-
sition is enabled and involves the following firing rule: one
token is removed from each of the input places and a new token is

4 With this initial marking the Petri net would model a single-
controller, single-disk subsystem. A layer subsystem could be
modeled by the same structure by adding more controller or disk
tokens to the initial marking.
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created and placed at each output place, Figure 3-4 illustrates the
results firing transition Tl for the Petri net of Figure 3-3,
after a new token has been introduced into the net at place Pl,

Disk Request arrives;
waits far controller

P

Controller allocated;
wvait for requested disk
(3]

T

Disk data transfer in n%i
",

controller
available
'F:Dl'

Figure 3-4 Petri Net After Tl Fires

The Petri Net as a CPE Tool

In 1972, Dr, Jerre Noe [Noe, 1971] of the University of
Washington considered the potential of the Petri net as a tool
for performance modeling, By building a model of a CDC 6400 operating
system and using it to study some basic performance characteristics,
Noe illustrated that the Petri net has several attractive
properties that make it a potentially tool powerful modeling., The
most important of these is the inherently deterministic nature of
the model. characteristic gives the model representational accuracy
not possessed by stochastic models (such as the queueing network




model)., A second property is the Petri net's ability to represent
a system in varying degrees of detail within the same net.

This characteristic affords considerable modeling flexibility without
a corresponding decrease in representational accuracy.

Despite its advantages over other CPE tools, the Petri net
has yet to became a widely applicable CPE instrument, The primary
reason is that the model lacks a crucial attribute required in
camputer performance analysis: an intrinsic time-resolution mech-
anism, There is no concept of measurable time for a Petri net
execution sequence, and so it is impossible to measure such things as
throughput rates and response times, In addition to the time
measurement problems, there is no mechanism to naturally represent
the flow of specific information across transitions, since all 1
tokens created at firing time are totally independent of any other
tokens already in the system, While this is not an insurmountable
problem, it does make the modeling of processes much more difficult,
particularly when dealing with multiple conditional paths,

The Evaluation Net Model (E-Net,)

Although the Petri Net, per se, did not prove a methodol-
ogy sufficiently powerful for modeling the performance of computer
systems, one of Noe's doctoral students, Gary Nutt [Noe and Nutt,

1972 and 1973], used the Petri net concepts to develop a new structure

which would retain positive properties of the Petri net while over-




caming some of its limitations., The result was the Evaluation Net,
or E-Net., This structure changed several of the basic concepts of
the Petri net and added quite a few new features, resulting in a
more complex modeling tool. Among the changes included were:

(1) The concept of time was implemented by "delaying" tokens
at the transitions, The amount of time was determined by a "transi-
tion procedure"” and controlled by a global timing mechanism,

(2) In addition to determining firing delays, the transition
procedures manipulated tokens and certain global variables.

(3) A set of global "environment variables" was specified
and used in conjunction with transition procedures, "resolution
procedures,” and other functions.

(4) Conflicts between paths were resolved using special
resolution procedures activated at transition firing time.

(5) Resolution procedures were also associated with a
special class of nodes utilized to aid in resolving ambigu’ties
throughout the network. These nodes contained resolution infor-
mation defined by the user of the system,

(6) Some tokens were made global. This change, though quite
significant, was required by the implementation of time in the
transitions instead of the places.,

The primary importance of the E-Net is that it was the
first major attempt at developing a Petri-net-based modeling system
for CPE applications. Wwhile the E-Net did not meet with wide

acceptance as a usable tool, it did show that Petri net properties
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could be at least partially preserved, and that a simpler Petri-net-
based structure might be useful, The primary drawback of the

system was its tremendous camplexity, which made even small nod-
eling efforts a major production to all but the true expert, This

camplexity is contrasted with modeling with queueing networks,

which requires a relatively small amount of expertise to construct
1 a reasonable and useful model,

Even with its rather cumbersome complexity, however,
Nutt's work represented an effective pioneer effort to the goal of
developing and implementing a Petri-net-based CPE model.




CHAPTER 1V

THE TIME-EXTENDED PETRI NET: BASIC CONCEPTS

The Time-Extended Petri Net (TEPN) is a modeling structure
based upon the Petri net and designed to meet the goals expressed
earlier in this Thesis. The advantages of the Petri net, in partic-
ular those of inherent parallelism and determinism, have been re-
tained, while the representational capabilities have been extended
by implementing places, transitions, and tokens in more elaborate
forms.

The Petri net has been extended to allow for the natural
representation of time-resolved behavior (changes to the token and
place objects) and state-dependent execution paths (changes to
the token and transition abjects). The TEPN places and transitions
are given attributes which allow the direct definition of perfor-
mance metrics as an inherent characteristic of a model. Finally,
the TEPN token is defined as a messenger for activating the places
and transitions.

Both the definition and placement of all TEPN attributes
are predicated upon a CPE rather than a theoretical view of the
Petri net. This view defines an inherent interpretation in which places
represent processes and queues, while transitions remain as synchro-
nization primitives that act as state transition arcs. Transitions
never represent either processes or queues, nor are they ever part of

the state definition of a particular TEPN model, Because of this inter-

24
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pretation, time resolution mechanisms are implemented campletely within
the place. This includes a place clock, internal place queues, and a
token delay time function., In support of the token delay time function
within the place, tokens have been extended to allow them to carry
external parameters, which can be used by the place token delay time

function to campute internal queueing delays. Similarly, transitions

have been equipped with special token tamplates to insure that when
tokens are created at transition firing time the tokens will contain
values for the parameters reguired to campute the token delay time
within the place.
I Implementation of state dependent execution paths requires
a token routing mechanism capable of resolving state conditions upon
which the token's path is dependent. Since this mechanism affects
the order of state transitions, it is implemented in the form of an

extension to the Petri net transition called a firing template. Along

with a corresponding extension to the Petri net token, the type attri-
bute, the firing template allows for deterministic token routing and
provides a mechanism to model the effects of process blocking.

i
|

Finally, the token type attribute provides an effectivé
mechanism for resolving the workload of systems into camponents or
activities. While this does not inherently increase the modeling
power of the TEPN, it does afford the practical advantage of being
able to collapse certain very large Petri net models which do not
employ token types into highly campact models with multiple token
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types. An example of this campaction capability is illustrated in
the example TEPN model of chapter six.

Throughout this research, the author has taken great care
to retain the modularity and subnetwork independence characteristic
of the Petri net. Extensions vhich create global enviromments (such
as a glabal synchronizing clock, glabal tokens, etc.) were avoided,
as were madifications which precluded reducibility of the TEPN into
a Petri net, in the default case. Despite these efforts the TEPN
structure has neither the simplicity nor the elegance of the Petri
net. However, it does appear to be a powerful model which remains
straightforward enough to be readily usable.

TEPN General Definition

The basic definition of the TEPN model, definition 4-1
below, is structurally equivalent to that of the Petri net, defi-
nition 3-1, in chapter three. The Petri net places and transitions
are simple primitives with mo dimensions or attributes. Similarly,
the token is only a "marker," with no "meaning” of its own. The
TEPN structure has the same building blocks but they are no longer
simple primitives. Rather, they are potentially camplex structures
with well-defined attributes. An analogous situation might be found

pre—

in the structure of chemical molecules, All molecules are built of




a basic huilding block, the atom. For quite a few years, the atom
was thought of as a primitive--i.e., it could not be broken down
further. Then scientists discovered subatomic particles which are
now known to be building blocks for the atom. The new atomic model
is able to explain a larger number of phenomena. But, in cases
where the subatomic particles do not make any difference, the simpler
model is still used and does not compromise the integrity of

the more complex structural representation.

In like manner, the TEPN model is able to represent many
system interactions which could not be modeled with the Petri net.
bhen the additional modeling power of the TEPN is unnecessary, how-
ever, the TEPN model may be treated as equivalent to the simpler
Petri net by allowing the more complex TEPN places, transitions, and
tokens to default to their simplest form.

Definition 4.1. Time-Extended Petri Net

A Time-Extended Petri Net (TEPN) is a modeling structure
defined by the four-tuple, C = (P,T,I,0), where,

P= (pl,...,png , a set of places, nz0;

T = {tl,...,tm} , @ set of transitions, m20;

I is the transition input function, 1:T—2F

0 is the transition output function, O:T—2F

sets P and T are disjoint.

The next three sections define each of the TEPN building

blocks: The TEPN place, transition, and token.




TEPN Place Definition
The state of both the Petri net and the TEPN is determined

by the states of the places within the particular net. The tran-
sition, on the other hand, is a network element that controls
state changes across the net. In this section, I discuss the
attributes of the TEPN place., These attributes, all extensions from
the primitive place concept found in a Petri net, heavily influence
the damain of problems to which the TEPN may be successfully applied,
while many of the extensions to the transition affect the solution
net's structure.

There are two project goals which led to the major exten-
sions to the Place definition. The first relates to the need for a
modeling basis capable of representing time-resolved behavior of
networks of processes. The Petri net models structures and struc-
tural relationships. With the Petri net, one can study paths of
both data flow and control flow through systems of considerable
camplexity; the Petri net also offers a precise notation for
describing the syntax of such system problems, A Petri net cannot,
however, describe the time-resolved behavior of a real system,

Modeling such problems necessitates that the model incorporate the

concept of time and timed performance,

The second project goal is developing a modeling structure
which provides a natural, but powerful mechanism for defining and
studying various performance metrics within the model itself, Since

virtually all performance metrics are defined in terms of the state
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history of the model, this goal involves the capture of state history
information for each of the TEPN places.
The TEPN place conceptually combines the concepts of

queues and servers. Functionally, the place receives tokens fram
input transitions, "stores” the tokens for some elapsed interval,
and, when an appropriate output transition is enabled and fires, it

"emits” the same token to the ocutput transition. In a CPE model,

J

J

! places might be abstractions of the resources or processes which

} do not create or destroy tokens; they act as a "way station" for

! f tokens between token creation (at the firing of the input transition)
| ‘ and token destruction (at the firing of the output transitionj.

This definition underscores three characteristics unique to the

place. These three are:

F (1) Tokens only reside at places, with the result that the
state of a net may be defined in terms of the states of places
within the net;

(2) The place conserves® tokens and could, if s0 implemented,

allow tokens to retain a unigque identity; and
(3) while there is no concept of time intrinsic to the Petri

net, there is definitely a concept of "waiting,” in that a token
resides at a place until it is moved by the firing of a transition.

5It.ltl'\ough places conserve tokens -- i.e., tokens are neither lost
nor added — this should not be confused with network-wide token
conservation as discussed in Petri net literature [Lien, 1976]
and [Pererson, 1977].
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These characteristics can be combined with a time mecha-
nism to provide a well-formed basis for modeling time-resolved
behavior. The TEPN place has been extended from the Petri net place
to include an internal clock and other attributes to effectively
support such a mechanism. In defining these attributes, we start

with the TEPN Place definition.

Definition 4.2 TEPN Place

The TEPN Place is a composite abject which receives tokens from
adjacent transition nodes and emits the same tokens to adjacent
output transition nodes. Each place is internally defined by
the following attributes:
(1) Place Clock, a non-negative, asynchronous
clock;
(2) Place Active Queue (PAQ), a queue of tokens waiting

to become enabled;

(3) Place Enabled Queue (PEQ), a queue of tokens waiting

to leave the place;

(4) a set of Place Performance Functions.

The four place attributes represent what the author
believes to be the minimal extensions necessary to give the TEPN
place the flexibility required for effectively modeling parallel
systems. As such, each of these attrilutes is directly linked to
the objectives discussed earlier in this section. The clock pro-
vides time-resolution without which most of the performance metrics
would lose meaning. The two queues provide a concept of ordering
as well as potential for delays (service times) and internal syn-
chronization (including priority schemes). Finally, the performance

functions provide a natural, intrinsic mapping from the place state
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history to the set of integers, The concept of the "state” of a
place and the place state history will be discussed further below.
There are several methods for defining each of the four
place attributes, For the purpose of this Thesis, it will be suffi-
cient to present the subattributes which form the most primitive
characteristics of the clock, queues, and functions mentioned above.
In the next chapter we discuss the implementation of the place in
terms of the functions which must be programmed in the implementation.
Each of the place attributes is said, for the purposes of
this Thesis, to be specified as one of two types of subattributes:
confiqguration attributes and state attributes., Configuration at-
tributes are those which determine the place's internal structure
and operational characteristics., If these attributes are not
ascribed meaning then the place would be undefined. An example of
such an attribute would be the queueing discipline attribute of a
gueue, A queue cannot be defined or used unless a queueing disci-
pline is associated with it, State attributes, on the other hand,
are those which directly affect the place's state when they change
as a result of execution of a network and movement of tokens through

the place. The current value of the place clock, for example, would

be a state attribute,

TEPN Place Clock
This clock is defined as a simple interval clock which is

undefined for negative or non-integer values. It is decreasing in
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that whenever it has a positive value associated with it it auto-
‘ matically and asynchronously decrements by units until the value
} reaches zero. The clock has no configuration subattrilutes, and
‘{ only one state attribute, called TIME.

f Definition 4.3 State of a TEPN Place Clock

I

3

5

I The state of a TEPN place clock is defined as the current non~

TIME, and is functionally denoted TIME(P), where P references

;' negative value of the clock. This value is referred to as the
|
[ the place whose clock is being cbserved.

TEPN Place Active Queue and Enabled Queue
A queue is an ordered list defined by an ordering function

(queueing discipline) and a function that determines service time.

& A queue may be further defined to include a maximum size; if it has

this attribute and the maximm size is finite, the queue is called a

bounded queue. The queues that define each place are queues of tokens

which are received by the place during execution of a network. The

first queue, the Place Active Queue (PAQ), accepts tokens immediately

upon their entry into the place. The service time within the queue
is determined by a function called the Token Delay Time Mapping

(TD™), which maps the attributes of the token into the set of

integers.
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Once the token has left PAQ it enters the Place W

Enabled Queue (PEQ)., This queue has no service time function; the

"service time" is determined by the state of the ad’iacent output

L transitions, When one of these transitions is ready to accept

a token, the PEQ will release a token (if one is available).
Although the PEQ does not have an internally defined service time
function, it may have a queueing discipline. In this case, certain
tokens will be considered to be receiving service while others

will be considered to be waiting, although the service time will

be indeterminate, since it depends upon the length of time the
"enabled” token must wait for an output transition to accept the

token.

Definition 4.4 Place Active Queue

The Place Active Queue (PAQ) of place P is the queue of tokens
residing within place P which will not be available to leave P
prior to a determinate minimum sequence of place clock

state transitions. The PAQ configuration is defined by the
following attributes:

(1) PAQ queueing discipline,

(2) PAQ Bound, and,

(3) PAQ Token Delay Time Mapping (TDIM).

Definition 4.5 Place Enabled Queue

The Place Enabled Queue (PEQ) of place P is the queue of




tokens that are residing within place P and which are not in
the PAQ. The configuration of the PEQ is specified by two

attributes:

(1) PEQ Queueing Discipline, and,

(2) PEQ Bound.
These two definitions clarify both the functions of and the
conceptual differences between the two queues. The first queue
k deals with tokens waiting because of internal delays caused by the
application of the PAQ TDTM; the second, the PEQ, holds the tokens
which are delayed due to external factors. It is important to
note at this point that the place not only has no control upon
these factors, but also has no visibility on them. 'The expected

wait time within the PEQ, therefore, is always indeterminate from
the viewpoint of the particular place.

The configuration subattributes of the two place queues
are described further below. Except where noted, the corresponding
subattributes for both the PAQ and PEQ are conceptually identical,
although in implementation they have no a priori relationship.

PAQ and PEQ Queueing Discipline. The ordering function,

or queueing discipline associated with each of the place gqueues may

be either a "standard" queueing discipline, such as first-come-
first~served (FCFS) or infinite processor (IP), or it may be a
specially defined function. Regardless of how it works, however,
the queueing discipline determines both how many tokens may be

—
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"active" or "enabled"” at any given time, and the degree of depen-
dence or independence of tokens passing through the same place.

One result of this is that the queues provide a natural partitioning
of the place's resident tokens into four sets, or states, For
purposes of this Thesis, these four states shall be defined as
follows:

(1) WAIT: token in PAQ, not being served

(2) ACTIVE: token in PAQ, being served

(3) ENABLED-BLOCKED: token in PEQ, not available to
leave place

(4) ENABLED-READY: token in PEQ, available to leave

place.

Queue Bound. Each of the queues may be bounded by same
finite value., This value will determine the maximum size to which
the entire queue may ever grow. The queues may be separately or
jointly bounded., A joint bound treats the entire place as a large
queue by stating that only a limited number of tokens may reside
within a place at any given time, If a place is only assigned a
joint bound then there is no restriction upon how the tokens will
be distributed among the two queues, In addition to or in place of
an explicit joint bound, each queue may be separately bounded. If ‘
there is no explicit joint bound but both queues are bounded then :
the place is said to have an implicit bound equal to the sum of the
individual queue bourds., If there is an implicit or explicit joint
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bound then the place is said to be bounded, as expressed by Defi-

nition 4.6 below.

Definition 4.6 Bounded Place

A place, P, is said to be n-bounded if the PAQ and PEQ of
P are jointly bounded by n. If n is the smallest integer
such that P is still n-bounded, then n is said to be the

minimal bound of P.

The concept of a finitely bounded place allows modeling of

systems which have severe restrictions upon the "processing” capa-
bility of specific nodes, or which display performance characteris-
tics very sensitive to increased "workload." However, it should be
noted that while no real systems are in fact infinite servers there
are systems where it is useful to determine the "natural" steady
state conditions that would exist if limits did not exist. There-

fore, there are many cases in which the places would be unbounded.

Token Delay Time Mapping (TDTM). Each Place Active Queue

has a Token Delay Time Mapping (TDIM) associated with it. This
attribute defines a mapping from the domain of tokens into the

range of non-negative inteqers, and determines the minimum internal
time delay required before the token may become enabled and enter the
Place Enabled Queue, The passing of this time delay is indicated by
camensurate changes in the state of the place clock. This delay
does not include any wait time experienced prior to the application
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of the function to the token., For example, if the gueueing

discipline is FCFS (first-came-first-served), then tokens would

have to wait in line until the PAQ "server" was ready. Then ‘
the delay TD™ would be applied to the token and the token would

reside within the "server" for exactly the amount of delay resulting

from the application of the token function to the token, after which

it would be released to the PEQ.

Definition 4,7 Place Token Delay Time Mapping

The Place Token Delay Time Mapping (TDIM) is a transformation
which maps the domain of tokens into the range of non-negative

‘ integers.

The State of the PAQ and PEQ. In addition to its

configuration subattributes, each queue has an implicit set of

state subattributes which define the state of the queue and help

to define the state of the place., Definitions 4.8 and 4.9 define

these state attributes,

Definition 4.8 State of the Place Active Queue

The state of the place active queue is defined by the following !

state attributes:

(1) The sequence of tokens within the queue in the WAIT
state, and

(2) The sequence of tokens within the queue in the ACTIVE
state,




Definition 4.9 State of the Place Enabled Queue

The state of the place enabled queue is defined by the

following state attributes:

(1) The sequence of tokens in the ENABLED-BLOCKED
state, and

(2) The sequence of tokens in the ENABLED-READY state.

TEPN Place Performance Functions

The TEPN Place extensions discussed above provide for a
well-defined and flexible ability to model time-resclved behavior
without altering the basic determinism and subnet independence
of the Petri net. The final extension to the Petri net Place is a
mechanism to introduce the definition of performance metrics into
the modeling structure itself. This aspect of the TEPN is somewhat
unique from most modeling methods in that it merges the " 7
modeling tools with the data analysis tools, thus simplifying the
CPE modeling process. This mechanism also aids the analyst
in validating the model by providing a reliable link between ]
the model and the model's apparent results. In other words, by
allowing for predefined, well-tested internal performance |
metrics, the TEPN structure definition may eliminate many of the
problems encountered when the output has not been sufficiently vali-

dated to assure agreement with internal results.




Definition 4,10 Place Performance Function

A Place Performance Function is a mapping fram
the sequence of execution states of the place over

a specified time interval into the set of real numbers.

Ancther way to state definition 4.10 is to say
that a performance function is a mapping from the results of the
execution of a TEPN model into a real number which represents some
standard (or, perhaps, non-standard) performance metric such as
throughput, average wait time, etc., These metrics are all results
of some "summarization" operation taking into account every state

that the place has experienced during the specified time interval.

Definition 4,11 TEPN Place Execution State

The TEPN Place Execution State is a function of time and
is defined as a vector containing the values of all state
subattributes of the Place Clock, the Place Active Queue, and
the Place Enabled Queue,
By combining Definitions 4.10 and 4.11, above, we see that the domain
of each place performance function is a sequence of vectors con-
taining the values of state subattributes over a specified time
interval., For a given model over a given time interval this

sequence is the model's state history.
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Definition 4,12 sState History

The state history of a TEPN place is the sequence
of execution state vector values over a specified time
interval, The state history for place P over the interval

(tl, t2) is designated Sp(tl,tZ).

We may now give an alternate definition for a performmance function,

Definition 4,13 Place Performance Function (alternate definition)

A Place Performance Function is a mapping of the place
state history into the set of real numbers. In functional
notation,
PPF = £( Sp(tl,t2) )
where (t1,t2) is the time interval over which the performance

is being measured.

One should note that at least for the conceptual definition
the internal specifications of any particular performance function
are to be avoided., Part of the significance of this feature in the
TEPN definition lies in the fact that the functions are defined

as part of the construction of each model.

TEPN Token Definition
Like the TEPN places, the TEPN token is a composite
data object., Definition 4.14 defines the TEPN token; the two token




attributes are then discussed in more detail below.

Definition 4.14 TEPN Token

The TEPN token is a composite abject defined by the following
attributes:
(1) the token type; and

{2) the token functional attribute set.

Token Type
The objective of the token type is to provide the token

with an identifier that can be used to control the token's execution
flow path., This attribute is used in conjunction with the transition :
firing template and is determined at token generation time (during

the firing of a transition), L

Token Functional Attribute Set (FAS)

At token generation time, each token is built to include
a set of intrinsic functions which return integer or boolean values.
These functions return values which are used by the place token
delay time function to determine the "service time" required of the
token upon arrival at the Place Active Queue (PAQ), Within the
TEPN's conceptual definition the exact nature of these functions are
not defined, since they are arbitrary in nature and are uniquely
defined for each token created and are incorporated within the
transition's token template, Definition 4.15 does, however,
describe the concept in more formal terms,
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Definition 4,15 Token Function Attribute Set (FAS)

The token function attribute set is a set of single-valued,
integer or boolean functions of the form (FNAME, value), where
"FNAME" is the function name and "value® is the current

functional integer or boolean value. ]

Marked TEPN Models

A TEPN is said to be marked when one or more of the TEPN
places belonging to the network have one or more resident tokens,
Similar to the Petri net, the marking of a TEPN determines most of
the state attributes of a given network. Unlike the Petri net, how-
ever, in which the marking is simply a count of the number of tokens
at each place, the TEPN marking may be expressed not only in terms
of token counts, but also in terms of specific tokens and their
current attributes, Because of this potential for added camplexity,

this Thesis defines two markings, the internal marking and the

external marking, As their names might suggest, the criteria used

in developing the definitions of each of these marking concepts was
the "view" of the internal versus external "observers" of each

place and of the network as a whole.,

Definition 4.16 defines the external marking of a TEPN.

This definition is eguivalent to the definition of a Petri net




marking for a Petri net that contains typed tokenss. Although
the information required to derive the external marking exists

as a subset of any more comprehensive inventory of the TEPN's
resident tokens, a separately defined external marking simplifies
situations where more camplex information would not be required.
Furthermore, it is important to recognize that the external marking
is the marking which could be observed via a "global” view, since
no place or token (or transition) attributes are global by

definition.

Definition 4.16 TEPN External Marking

The External Marking of a given TEPN, N, is a K-wvector,
where k is the number of places in the TEPN, and the ith
element of the vector is an m~vector in which m is the
integer count of token types currently defined within place
P, a unique place within TEPN N, and the jth element of the

vector is the count of Pi resident tokens of token type TYj.

The internal marking is described by the sets of actual

tokens residing at each place., This is the view fraom within the

6 poterson [Peterson, 1979] and others discuss Petri nets with
"oolored”, or typed tokens, as a manner of simplifying Petri nets,

As Peterson points out, any Petri net with typed tokens, of a finite
number of types, can be shown theretically equivalent to some Petri net
without typed tokens. This equivalence does not necessarily hold

up within the TEPN environment, except in the default case (in which
the TEPN becomes a Petri net),
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place itself., The internal marking includes not only the number

and types of tokens within each place, but the current state of

each token and, in some cases, the function attribute values for
specific tokens within specified places. Definition 4.17 defines
this marking concept. Note that the marking is characterized by sets,
and not token sequences or giueues. The ordering of tokens within
each place queue is not a factor in the marking although this ordering

is important to the place state.

Definition 4.17 TEPN Internal Marking

The Internal Marking of a given TEPN, N, is a (1 x k) vector,
where k is the number of places in the TEPN, and the ith element
of the vector is a partition of the set of tokens residing with-
in place Pi' of TEPN N, expressed as an ordered four-tuple,

= TS
Mi (TSw, ’I‘Sa: on’ Tser)' where, ,J

'1sw = get of place tokens in WAIT state,
'I‘Sa = set of place tokens in ACTIVE state,
Tse.b = set of place tokens in ENABLED-BLOCKED state, and

'Iser = set of place tokens in ENABLED-READY state,

Mi is called the Local Internal Marking for place Pi.

TEPN Transition Definition ;

Like its Petri net counterpart, the TEPN transition is a g
synchronization primitive which controls the flow of tokens across
a TEPN model. Similar to the Petri net transition (and unlike the

T et ————
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TEPN place), TEPN transitions neither hold tokens nor record

the passage of time. All actions which happen at a transition are
considered to happen instantaneously; in this sense, the tran-
sition can be likened to a switch required to control local state
changes, Since there is no concept of action or token storage at
the transition, the transition has no attributes which impact the
state of its parent net--all transition attributes are configuration
attributes whose values are determined as part of the model
definition.,

The TEPN transition is formed from the Petri net tran-
sition by adding two attributes: one impacts the enabling process,
the other controls the creation of new tokens during the
transition firing process7. The first attribute is the transition

firing template. The firing template controls the transition

enabling process by selectively filtering input tokens and
allowing only tokens of predetermined types to enable the transition,

The second attribute is called the transition token

template set. Since TEPN tokens are defined with attributes
there must be a mechanism for building new tokens with the attri-

butes requisite to correct operation of the model.

i The TEPN retains the basic transition firing and enabling process
of the Petri net, as discussed in Chapter 3. Wwhile the transition
firing template and token templates alter some of the specific
conditions under which transitions may became enabled and create
new tokens, the basic concepts of enabling and the firing remain
intact,

e A e am i
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Definition 4.18 defines the TEPN transition; each of the
two attributes are then described and formally defined following the

general transition definition,

Definition 4,18 TEPN Transition

The TEPN transition is a camposite abject which receives tokens

from adjacent input place ncdes, creates new tokens for trans-

mission to the output places, destroys the input tokens, and
transmits the new tokens to the output places for which they
were created, The configuration of each transition is defined
by the following two attributes:

(1) TFTS, a set of transition firing templates; and,

(2) TTTS, a set of transition token templates

TEPN Transition Firing Template

In a Petri net, a transition is said to be "enabled"
whenever there is a token residing at each of its, input
places. Extending the TEPN place to include an internmal token delay
mechanism changes the definition of an enabled transition. Rather

than simply requiring that each input place have a token, a TEPN
transition may only be enabled by tokens that have been "released”
or "enabled" by the place after the required internal wait time,
The transition firing template extends the transition enabling
conditions a step further by allowing selective enabling based upon
the types of tokens residing at the transition input places. More




specifically, a transition firing template acts as a filter that
only allows tokens of prespecified types to enable the transition.
When there are two or more input places, the firing template speci-
fies not only the token types that may enable a given transition,
but the allowable cambinations of input token types as well, For
example, if there are three input places which may emit tokens of
types A, B, and C, the enabling patterns might be (A,A,A), (B,B,B),
and (C,C,C). 1In this case, the transition will fire only when there
are tokens of the same type at all input places. Ewven though all
three types are "legal", the transition would not be enabled by any
cambination not specified above (e.qg., (A,A,B), (A,B,C), etc.).

The primary need for this extension arises fram the
difficulty in the Petri net of modeling the deterministic
performance of systems with dynamically chosen multiple
execution paths, For example, when modeling the performance of
a disk subsystem, the modeling cbjective may require detailed
information concerning the performance of the system on a channel [
by channel and disk by disk basis. If the workload can be shown
to be evenly spread across all of the subsystem camponents, this
objective does not present serious problems, since the aggregate
average performance will reliably model the performance of
individual components., However, in cases where certain channels,
controllers, and disk drives are more heavily utilized, such as
a system in which the system software storage units may be
utilized with several times the frequency of use of most other
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units, the model must allow for transactions (possibly represented

o

by tokens in this case) to detemministically specify the
execution path, a feature not intrinsic to the Petri net model.
In a Petri net, when there are multiple paths emanating from a
place there is no way of controlling which path will be taken.
The TEPN transition firing template solves this dilemma by
allowing only prespecified token types to enable the transition.
In addition to the extended modeling power that it
affords the TEPN model, the firing template often reduces the
number of nodes required to model systems by allowing several
independent paths originating in a common place node to be
collapsed into one path with multiple firing templates. This
advantage is demonstrated by the model presented in Chapter VI,

Definition 4.19 TEPN Transition Firing Template

A firing template of transition T is a function fraom the
set of local internal markings of all places in I(T), the set of

input places to transition T, into the boolean set, ENABLED, NOT

ENABLED . In functional terms,
TFT:LIM,—~» {ENABLED, NOT ENABLED},
: where, Lmi is the current local internal marking of |
place P,/ the jth member of I(T). 1




TEPN Transition Token Template

Each transition's output token template set defines the

tokens to be created by that transition during a firing sequence.
Because TEPN tokens have types and attributes, and because these
attributes are not glabal, each transition must have the information
necessary to build tokens with the "proper" attributes, The mechanism
for doing this is the token template, which, when executed, uses

the transition's input tokens as inputs and generates a single token
as the output. The set including one token template for each output

place is known as the token template set.

Conceptually, an output token template is a function
from possible sets of input tokens possible output tokens.

There are a few attributes of the token template which
should be noted. First of all, while the input token set is used
as input to the token templates, the token templates are campletely
independent of the transition firing templates. Secondly, the
concept of the token template is independent of the particular
attributes of the tokens, The exact attributes, etc,, are dependent
upon the system being modeled. Definition 4,20, below, formally defines
the transition output token template,

Definition 4.20 Transition Token Template

A Token Template is a function from the set of sets of
possible input tokens into the set of possible output
tokens., More specifically, the token template defines the

transformation from the set of input tokens for a given
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transition to a single token to be created during the tran-
sition's firing sequence and sent to an associated output

place., In mathematical notation:

TOKENi = ’I'I'I'i (TIS)

where,
'IOKENj is the token being sent to place Pj'

J
TIS is the sequence of tokens which enabled the transition

- TIT. is the token template associated with place Pj'

(one from each member of I(T)),
| P is the .th place in the set O(T), 1£j < [om)].
Execution of the TEPN Model
Just as the TEPN marking was defined in terms of two
1 observers, so the model execution might be described.

The external view of TEPN execution is generally identical

to that for the Petri net, When there is an eligible token at each
transition input place the transition "fires" by removing the
enabling tokens from the input places and creating new tokens for
the output places,

The internal view of the execution introduces both the

firing and token templates within the transition and the time delay

mechanisms within the place. Each of these extensions fram the
Petri net have been individually presented earlier, and will not be
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discussed again in this section. It is important to recognize that
the introduction of these features makes both net performance
analysis and TEPN implementation as CPE tools more complex tasks,
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CHAPTER V

THE TIME-EXTENDED PETRI NET:

IMPLEMENTATION OF THE TEPN MODELING SYSTEM

This chapter presents machine independent module and function
specifications which cutline an implementation of the TEPN as a CPE
tool.

| The format of these specifications is a data-object centered
decamposition using the methodology proposed by D. L. Parnas Parnas,
1972 in his extensive work on the specification of software systems.
This is a conceptual design stage and is transportable to many
potential host system implementations,

The first section of this chapter presents the cbjectives
of the TEPN modeling system and relates the system to the overall
goals of this Thesis. The second section overviews the TEPN system
design, concepts and organization. The third and final section is a
set of highest level module specifications.

Objectives of the TEPN Modeling System

The implementation of the TEPN has two major goals. The
first, and possibly most important goal is to provide an effective
test bed for evaluating TEPN models of non-trivial systems., Because

of camputational complexity, it is virtually essential to use auto-
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mation to execute a TEPN model since at this time there are no
known techniques for analytically "solving" a TEPN model, as there
are for solving queueing models.

The second major objective of the TEPN system imple-
mentation is to evaluate the TEPN's cost-effectiveness as a modeling
tool. There are several areas which make up this trait, including,

(a) the time to build a model,

(b) the difficulty of validating models,

(c) the efficiency of the actual model execution, and

(d) the usefulness of the output.

System Design Overview

The TEPN Modeling System consists of two subsystems., The
first, subsystem DEFINE.TPN, provides the mechanism for the user to
define the structure, semantic, and performance evaluation
attributes of a TEPN model. The second subsystem, EXEC.TPN, ini-
tializes and executes a TEPN model according to user specifications
and outputs the performance statistics resulting from the model's
execution.

Each of these subsystems is decamposed into Parnas modules
centered upon the data structure and other major internal design

decisions.
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Subsystem DEFINE.TPN

The purpose of this subsystem is to assist the user in
designing accurate TEPN models and translating these designs into
internal structures that can be efficiently used to execute the
models, Figure 5-1 illustrates these objectives in terms of inputs
and outputs to the subsystem as a whole. The inputs, including
the TEPN structure, semantic attributes, and performance charac-
teristics, result fram the manual network design process and are
input in the TEPN Network Definition Language (NDL). The
outputs are a network description in another format to assist
the user in angoing model development and the TEPN description
file for the TEPN execution subsystem,

| SUBSYSTEM
e e | Ll DEFINE TPN D
TEPN DATA
STRUCTURE
INTERNAL
REPRESENTETION)

[ 1\

PARSER .NDL BuULD . TPN VERIFY. TP

Figure 5-1 Subsystem DEFINE.TPN
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DEFINE.TPN consists of three modules:

(1) MODULE PARSER.NDL

Each DEFINE.TPN system is partially characterized

ADERSA £ 5P

by a user-interface language called the Net Definition Language(NDL).
The NDL Parser accepts NDL strings and translates them into a TEPN

model that can be used by the execution subsystem.

(2) MODULE BUILD,TPN

This module consists of a set of functions which
may be used to build the internal structure of the TEPN model as

required by the execution system. This module shares data structure

with TEPN, PLACE, and TRANSITION modules in the EXEC.TPN
subsystem, since the functions must have knowledge of the internal
structure of these TEPN building blocks within EXEC.TPN. For
this reason, BUILD.TPN is itself partitioned into submodules,

each of which only deals with a single data structure (i.e., only
the PLACE, or the TRANSITION — not both).

(3) MODULE VERIFY.TPN

This module may be invoked by the user as a means
of verifying that the final TEPN resulting from the original NDL
definition is what it was intended to be. The functions in this
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module traverse the data structure and output a user-oriented
description of the TEPN structure and attributes as they are
currently defined.

Subsystem EXEC.NET i

The EXEC.NET subsystem handles all of the work involwved
in executing and observing the performance of a TEPN network.
Figure 5-2 schematically illustrates the work performed by the
subsystem,

TEPN
PERFORMANCE
STATISTICS

| TEPN ‘
TEAN \ FINAL MARKING 1
INITIAL MARKING SUBSYSTEM |

EXEC. TPN ,

oy ™
e RN,
EXECUTION  CONTROL
VARIABLES /

INT.TPN | ISTER.TPN]  |puace . TPN Tﬂ!*tg‘“ON- TOKEN, TON] [ TEPN. TPN




The subsystem consists of six modules, each of which
are described below:

(1) MODULE INIT.TPN

This module accepts an unmarked TEPN (probably
from Module BUILD.TPN) and applies an initial marking to it,
thus beginning the execution cycle. This module is also respon-
sible for initializing and operating any "token generators”
required to simulate workload throughput. The designs of the
initial marking format and the token generation mechanisms are

localized within this module.

(2) MODULE MASTER,TPN

This module keeps track of upcoming events in the
execution of models. This module maintains an event timing (and

"alarm”) system which allows for orderly system execution.

(3) MODULE PLACE.TPN

The place data structure design is embedded
within this module, which consists of all functions used to
manipulate the place structure during model execution. In
addition to the functions required to execute the place, this
module also includes the set of functions required to support

the BUILD.TPN module of subsystem DEFINE.NET (although for




purposes of efficiency, these build routines are embedded directly

in the BUILD.TPN module,

(4) MODULE TRANSITION.TPN

Similar to Module PLACE.TPN, the TRANSITION.TPN
module defines the design of the trainsition data structure and
supports all functions required to execute the TEPN transition,
as well as those required to build and initialize the structures.

(5) MODULE TOKEN,TPN

The token is dynamically created and destroyed
during network execution and this module localizes all functions

related to those processes. In particular, this module consists
of the functions which build tokens from transition token templates

as well as from the initial marking defined by Module INIT.TPN. !

(6) MODULE TEPN.TPN

This module maintains the internal data structure
that views the TEPN model as a whole, rather than in terms of

individual places or transitions. In terms of the original TEPN

definition (definition 4.1, of Chapter IV), this module maintains the
TEPN Input and Output functions, I('ri) and O(Ti). respectively.
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TEPN System Specifications

The remainder of this chapter presents the programming
Design specifications for the TEPN Modeling System. Three of the
modules, Modules TOKEN.TPN, TRANSITION.TPN, and PLACE.TPN, form
what could be considered the "heart” of the system since they are
the direct implementation of the definitions presented in Chapter
four. The reader will notice that these modules' specifications
closely follow their formal definitions in Chapter IV.

In studying these specifications, it is important that

! the reader understand their purpose. These are not computer

programs. Nor, for that matter, do they define specific
algorithms or data structure designs. Rather, they are designed

to commnicate the functions and operations that are part of each
module and information required to interface with each module.

The format for the specifications is uniform throughout.
For each module, there is a "header section" consisting of the
module name and a general description of the modules inputs and out-
puts. Each header section is then followed by a list of each function

defined for that module. In the case of the basic TEPN data objects,

these functions include not only actions upon the object but the
| cbject's attributes as well. The format for the function specifica-

tions is:




Function: the function name with parameters in
parenthesis

possible values: if the function is an at~
tribute which itself takes values, the value
range is specified here

parameters: the names and data types of any
input or output parameters

effect: the external effect that the function
will have upon parameters and other functiocns
{including calls to other functions)

initial value: if the function can take on a
value (i.e., if the "possible values" attribute
is other than "none"), this attribute specifies
what, if any, initial value is assumed.

A cn
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Subsystem DEFINE.TPN

Module Implementation Specifications

Module: PARSER.NDL

Module Description: Accepts a TEPN defined using the TEPN

Network Definition Language (NDL) and translates the NDL
strings into calls to functions of Module BUILD.TPN, These

function calls are grouped into a network definition "meta

file" which may either be saved or immediately passed to the

BUILD.TPN module for processing.

Impact upon other modules: Prepares calls to BUILD.TPN

Data Structure Unique to Module: NDL String

Function Description: This module is described by a single,

general function that parses NDL strings and creates
equivalent function calls.

Function: PARSE.NDL (NET.NDL, NET.BLD)
possible values: none
parameters: file NET.NDL; NET.BLD

effect: none




Module: PARSER.NDL

Module Description: Accepts a TEPN defined using the TEPN

Network Definition Language (NDL) and translates the NDL
strings into calls to functions of Module BUILD.TPN, These
function calls are grouped into a network definition "meta-
file" which may either be saved or immediately passed to the
BUILD.TPN module for processing.

Impact upon other modules: Prepares calls to BUILD,TPN

Data Structure Unique to Module: NDL String

Function Description: This module is described by a single,

general function that parses NDL strings and creates
equivalent function calls.
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Module: BUILD.TPN

Module Description: Accepts a set of function canvmands prepared
by PARSER.NDL and builds the internal 'i'EPN structure which is
then passed on to subsystem EXEC.TPN system, May also operate
using direct cammand file (not prepared by PARSER.NDL).

Inpact upon other modules: none

Data Structure Unique the Module: TEPN Data Structure

(PLACE, TRANSITION, TEPN)

Function Description: These functions form "virtual" submodules,

each of which centers upon a specific data structure and

is conceptually "tied" to an appropriate module in subsystem
EXEC.NET. For example, each place is built using functions

(e.e., BLD.PLA or NEW.PLA) within BUILD.TPN but specially designated
with a .PLA suffix, These functions whare "knowledge" of

the internal place data structure with module PLACE.TPN of

subsystem EXEC.NET.
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TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

L SUBSYSTEM: DEFINE.TPN MODULE: PLA

FUNCTION:  NEW.FLA (FNAME.
FOIIIELE YALUEZ: eLmceE-IL
FRFAMETEFIZ:  anum-sTRInE FNANE
EFFECT: swpue
INITIAL VALUE:  wnone

PEZCFIFTION: ERcH FLACE 1§ RESIGMED & GEHERRL N&ME E . THE
UZEP ANT AN INTERHAL NAME v THE EVETEN. THEﬂEFU’E! OrE
DF THE FIRIT FUNCTIONS OF CREATING A NEW FLASE 1€ TO RAESTIEn

FUMCTION:  ELD.FLA FeTYFETIN.TOUT
FOIZIELE YALUET: wone
FAFARMETEFZ:  FLmCE-1D F! FLRCE-TvFE TYFE! TRAZET TINTOUT
EFFECT:  CLOCH.TYFE'Fs = Tvegt

caLL ADDFLA.NET F TINMTOUT

DEZIFISTION: EBuUILDE THE FLACE INTERMAL STRUCTURE tWITHOUT
FREANMETERS ', THE TvEE “DEFALLT DR TRITIVE ' DETERMINMES
THE TVEE DF ETPUCTURE THAT WILL FE USED.

FUNCTION:  ELDFAC.FLA FeCDIZC TDTM END
FOIZIELE VALUEZ: wNDnE
FAFAMETEFC: riLmce-I1n P priscieLine ODICCS
INTEGE® FuNncTION THTMY 1wTEsER END
EFFECT: GDIZC.FADGE = @DIICS
TDTM,FREC Py = THTME
EDUMD.FAG Ry = EHDY

DEZCFIFTION: INITIALIZES THE ATTRIFUTEZ DF THE FLmcE ACTIVE GueEwE.

~ e e - .y e
NUEF SR YL




TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: DEFINE.TPN MODULE: pLA

FUNITION:  EBELDOFEG.FLA FeODIICEND.
FOIZIELE VWARLUEZ: rnone
FAFAMETEFRT:  FLaczE~10 Fi prIsciFLIne OIS0 tuveses Fril
EFFECT: OQDIZC.PER (Fr = QLIZCH
BEDUNHDL BED Ry = ENDG

DEZCFIPTION: INITIALIZES THE RTTRIEUTES OF THE FLACE ENAELED (WEUE.

FUMCTION: ELDFFF,.FLA (Fs FPFIET:
FOZZIEBLE WAHLUEZ: wonE
FRAFAMETERZ: eLmceE-ID F3 errrseT FRFIET
EFFECT: FRFI «F« = FPRPFI (P2 + FRFIET

IEZCPIFTION: THE mCTUAL PLACE FERFOPMANCE FUNCTIDN DEFINITIONTS
&PE FOTH IMFLEMENTARTIDN AND USER DEFENDENT. THIS FUNCTION AISUMES
THAT THE FFF NneamEs 1w FRFZET We'E BEEN LEFINED EITHEP B+ THE
IMFLEMENTATION SvETEM (SUSGESTED FOP MDST COMHDM FUNCTIDNZ ' OF

THE UsER,
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: DEFINE.TPN MODULE: BUILD

FURCTION: NEW NET (NETHANE .
FDZIYIELE MALLIEZ:  TEsn-1D
FRFHMETEFZ:  anum=syein: NETHANE
EFFECT: w~oOuE
INITIAL VHLUE: w~ownE

DEZCFIFTIDN: STIGHE INTERNAL EETEM NAME TO USER-~GIVEN NANE FOR
TeE EnTIRg TEFN mored.

FUNCTIODN: ADDFLAE.NET Fs TIt4e TOUT:
FOII1ELE VALUEZ: wDnE
PRHFAMETEF LS  eLmceE=-1D Fi vemser TINe TDUT
EFFECT:
FOP ERCH TRANSITION T In TOUTs TIHIET  To=TINIET (T +F
0P EACH TRANSITION T In TINe TOUTIET T =TOUTIET T 4F?

IECCFIFTION: EztmgLieweEs awPCs Feonm FLaCE B TD 178 DUTEUY TRALZITIDNS
&L FROY ITS INFUT TRE&NTITIONS TD F.r

FUNCTION: ADDTFAR.NET (Ts FINe FDUT:
FOCZIELE VALUEZ: wNONE
PAFFMETEF T  twanziTIOn-1n Ti eLmgeT FlNe FDUT
EFFECT: rDm Eacw FLRCE F In FING TINZET T =TINZET T aF
rOm EACH PLACE P IN FDUTs TOUTZET T =TDUTZET(T: 4

DEZCFIFTION: ESTRAELIEHMES mmCE EETWEEN TRPANIITION T anNp ITS INFUT
AND DUTEUT FLAMCES.

P
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

URSYSTEM: DEFINE.TPN MODULE: BUILD

FUNZTION:  NEWM.TFA o« THAME
FOZIIELE VWALUEI: TYPAnIITION-ID
FAFAMETEFRZ:  @nom=—sTRInG THAME
EFFECT: npnue
INITIAL MALUES NOHE

DEICFIFTID:  FAzs1enus AN INTERUSAL PEFERENTE HEME TO THE USERP-Z1I'EN
TR&NMZIITIODN NANE,

FUNCTION:  ELD.TFA ‘ToFIMe FOUTH
FOCZIELE VALUEZ:  npue
FAFAMETEFI:  TRPAnZITIOuU-IT T! eLaczet FINs FOUTE
EFFECT: caLL ADDTFA.HET «ToFINFDUT»

DEICFIFTION:  EOfiDs THE INMITIAL INTERM&EL STRUCTURE FOP TRANIITION 1
MHD CALLE FUNCTION TO INSERT TRAMSITION INTO THE NET STRUSTUSE. L

FUNCTION:  EBLDTT.TRA <T.TT
FOZZIELE VALUEZ: wNone
FAFAMETEFRZY  TeausiTiOn-1T T3 vorTEMe-1r TTS
EFFECT: TTI¢Ty = TT2¢T + 77

DEZCRIFTION:  EBUILDS THE TDrEN TEMFLATE #Z ATTRIEUTE OF TRAMZITION T.
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

UBRSYSTEM: DEFINE.TPN MODULE: BUILD

FUNCTIDN:  ELDFT.TRA (T«TFT:
FOITIELE “HLUEZ: wone
FAFAMETEFZ: TPaustTION=ID TS5 FIRPEYEMF-IL 1FT
EFFECT:  TFTZ:Ts = TFTI:T: + TFT

DETCRIFTIONG  EBEUILDE THE TRANSITION FIRING TEMFLATE AZ ATTRIELTE
OF TRANTITION T.




Module: VERIFY.TPN

Module Description: This module allows the user to verify that
the TEPN structure built is the same as that which was actually
intended by the user. The module allows the user to examine
either a single node within the net or the entire net.

Impact upon other Modules: Calls functions from other modules.
Data Structure unique to Module: none

Function Description:

PO R WAL




TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: DEFINE.TPN MODULE: VERIFY

FURCTION: VEFIFY.FLA FHAME
FDIZIELE YALLDEI:  wmonE
FRFAMETEFZ:  FrLACE-nAmME FHARE
EFFECT: wone

DEZCFIFTIDN: FETUPHE CONFREMENIIVE LESCRIFTION DOF & ZFESIFIEDL FLACE.

FLURITION:  VEFIFY.TRACTNAME
FOZZIELE VWALLEI:  wOuE
FRFAMETEFZ:  TRAns1TION-NAME THANE
EFFECT: wnoue

DEZCFRIFTIDN: FETURNZT CDNMFREMENSIE DESCPIFTIDN DF SFECIFI1EL TR&UIITIOH.

FUNZTIDON:  VEFIFY.HET fNETHANME
FDIZIELE VALLE::  wow
PREAMETEFRZ:  NETNAaME NETHNAME
EFFECT: wnonE

PE-CFIFTION: Fetupns TEFN £TRPUCTURAL DEFIMITION.

S UL N e I
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Subsystem EXEC.NET

Module Implementation Specifications

Module
INIT.TPN
MASTER.TPN
PLACE.TPN
TRANSITION, TPN
TOKEN. TPN

TEPN.TPN

List of Modules

Description

Initializes TEPN for execution
Master control for TEPN execution
Place data structure

Transition data structure

Token data structure

General TEPN attributes (external) 1




Module: INIT.TPN

Module Description: Module initializes TEPN marking and other

functions required prior to the execution of a TEPN.

Impact upon other Modules: Calls functions within other

modules.

Data Structure Unique to Module: Net initialization format.

Function Description:




TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: INIT.TPN

FUNCTION:  MEFLFLA, IN] CFNAME S TOF «
FOISIELE VALUES: NDOHE
FPAFAMETEFI: sLAce~nNAME FNAMEs Toren-1v TOH
EFFECT: F=FLACEID <FHAME
caLl T AHRF.FLA P TOH ¢+

DEZCFIFTION:  INSERTS Aty INITIAL TODsEN INTD A FLACE

FUHCTION:  ECDTOL.INI <TOR«ATTFZET
FOITIELE WHLLUETS  nDone
FAFAMETERZ:  TOrEM HAnE TOHs TOFEN &TTRIEUTE
SET ATTFIET
EFFECT: rnpnE

DEZCRIFTIDON: FoILDs an INITIAL STRTE TOFEM WITH

USER SUFFLIEDI ATTRIEUTE FET.

FUNCTION:  Fur. IND GFLIZTY
FOZZIELE WALUEZ: wonE
FAFAMETEFRZ!  Pun FAPAMETER LisT FLICT
EFFECT: INITIALIZE ALL RUN FRPAMETERST

THIE FUNCTIDN WILL ESTARLISH ALL THE MECH&NISMI RECUIRED
ZINCE THESE APE IMFLEMENMTATION CHARKCTERISTICS @D
1€ FPRESENTELD IN THIS THWEZ1S FOR

THE MDIEL HALT CRITERIDN IS

DEZCRIFTION:
EYv RUN FHRRAMETERS.
0 NOT AFFECT THE TEFNs nD DEZIGH
FRAPAMETER OFEPRATION. S & MIWNIMLMS
HNEEDED AT A FAPAMETER.,
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Module: MASTER.TPN

Module Description: Master "control” module that keeps track

of events that need to be monitored and which are important
to the immediate operation of the net.

Impact Upon Other Modules: None

Data Structure Unique to Module: Future events list/chain,

Function Description:




TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

URSYSTEM: EXEC.NET MODULE: MASTER.TPN

FUNCTION:  FEVSCH.MAT Fs TIME:
FOCSIELE VALUES:  wnone
FREAMETEFZ:  sLmcED-IT F3

INTESER TIME.
EFFECT: nonE

DEZCFIFTION:  THis FUNCTIDN DUEUVES A FUTURE ENENTs THE TREUSFER DF &
EFECIFIED TDrEN INH & SFECIFIED FLACE FROM THE FHD To THE FED &7 &
1ALREAD, TETEPMINED TIME.

FUMCTION:  FEVRFEM.MAZ oFs TIME.
FOIZIELE WHLUEZ: wowne
FREAMETEFZ:  FLAZE-IT Fs INTESEP TIME
EFFECT: mnouE

DECCFIFTION: DELETES AN EVENT FRADM THE FUTURE EVENT CUEUE.

FUNCTION:  NATEY.MAC
FOTZIBELE WALLUET: w~OnE
FAFAMETEFRI: w~NONE
EFFECT: IF WALT FRARAMETERP: MET THE wWALT ELZE
FP=F.EYT CCENEST (FEY D »
chaLL FLAENA <F

DEICFIFTION: IDENTIFIES THE NE®T EVENT IN THE FUTURE ENENTE CUEUE Anl

PEMDUET THAYT DUELE ENTR.. FLAENA 1€ CALLED TO ENARELE THE TOrEN AT THE
FAD 1M THE AFFROERIATE FLEKCE., TMIS TRIGEERS ANV NEMLY ENRELED
TRANSITIONS AND RESULTING CHANGES TD THE TEFN svaTE.
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Module: PLACE.TPN

Module Description: All functions concerning the internal

characteristics of each place.

Impact Upon Other Modules: None

Data Structure Unique to Module: PLACE

Function Description:
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNCTIO: FLACEID vFRAME.
FOZZIELE VALUE:: eLmCeE-ID. -
FRFAMETEFZ:  Anum-symiuz PNAME
EFFECT: wOnE
INITIAL VALUE: wnouE
FETURNE THE INTERUAL FLAZE=~ID WHEN
GILVEN THE USEPR DLEFJIMEDL FLATE NANME.

DEZCRIFTION:

FUHCTIDN:  EDUMDL.FLA P
FOIZIELE WALUEZ: WNDNEFDSITIVE INTEGERS
FRFAMETEFZ: FLAzE-ID F
EFFECT: woONE
INITIAL WALUE: MIGHYHLUES
DEZCRIFTION: Sum oF THeE FED ang FAD EDUNDS.

FUMCTION: PLARCT.FLA (F2TOkK
FOZZIELE VALUES: w~onE }
FRFAMETERZ:  eLAcE-1D F3 TOrew-11 TOH
EFFECT: cauL PRDADD.FLA (FoTDr

DEZCRIFTION:  "FMCYIvaTEZ" FLACE UFDN ARRIVAL DF & TOFEN FRDM
Al INFUT TRANSITION.




TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

UBSYSTEM: EXEC.NET

MODULE: PLACE.TPN

FUNCTION: ©DISCL.FEC
FARFAMETEFRZ:

EFFECT: wONE
IMITIAL VALUE:

LEZCRIFTIDON:
THO FUNCTTIDONE SINCE
GEFLIED TO TOVENE ERTERPING THE

WHTITH ALLDUE
DEL®Y
AN FIRE TRANIITIONS.

ALL TORENST

FLU4CTIOM:
FHPAMETER 2
EFFECT: wNoOnE
INITIAL VHLUE:

LEZCRIFTION:

FUNCTIDN SIZE.FER (P
FAFAMETEFRZ:

EFFECT: woOnE
INITIAL VALLE:

DEZCRIFTION: <1ze oF Tae FEO.

FUNCTION:  ZI1ZE.FAG

PARAFAMETEFR %
EFFECT: w~OnNE
’ INITIAL VALUE:

DESCFIFTION:

P
FOICIELE WALUEZD:
FLACE~-IT F

Tug FLecE ENARELED (UEUE 15 DEFINED E.
THERE IS MO INTERPHAL DELAY

THE INITIAL PUELEING DISCIFLINE IS
TH&AT HWE'E COMFLETETD
AT THE PAD TO FE IMMEDIATELY AVAILAELE TD ENAELE

EDUND, FED VR
FOIIIELE WRLUEZD:
FLACE-ID F

OuvEVE FOUND D THE FPED,

FOZTIELE “YALUE::
FLACE-ID F

Fo
FPDZZIELE VALUEZ:
FLmCE-ID F

CUELEING DISCIFLINES
IHNFINITE FRDIEZZDR
QriL
FUNCTION
FE®,

"INFINITE FRDTESZDF
THE IHNTERURAL

FOSITIVE INTEGERST

HIGHYALLIE

FOSITIVE INTEGERS

[}

THE NUMEER OF TODHENT THERE.

FOSITIVE INTEGEMNS

0




TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPEC!FICATIONS

SURSYSTEM: EXEC.NET

MODULE: PLACE.TPN

FUNCTION: INTMREL FLRF
FOZIIELE VWALUED: sev oF Toren:s
FHFAMETEFS: eCmce~ID F
EFFECT: w~ouE
INITIAL VALLE: woLe sev
DEZCRIFTION:  FETUPHE THE INTEBHAL MAP 1HGs THE SET DF ALL
TOr ENT IH & FLACE.

FUNCTION:  PRORDILFLA CFs TOK o
FOIZIELE WARLUED: wouE
FREAMETEFI:  FLAce~1p F3 ToOrENn-~11 TDY
EFFECT: IHTMARY Fv = INTH&FL F) + TO
IF TOr = QHEST.FLAMFARGF Y ThHEN
Time = TOTHM.FPLA
Ll FEVIUH.MAZ CFaTINE

INITIAL VALUE: nom

TO THE FAD OF FLACE F.

DEZCRIFTION: Apps 1eucOMING TOvEne TO»
ACCORDING

INTERMALLY Y THE TDrEN WILL EE INSEPTEL
TO THE FHD § PUEVEING DISCIFLIMNE.

FUNCTIDN:  GOMEXT.FLA 0ok
POZZIELE VRLUEZ:  vorew
FHFAMETEFRZ: PueEvE §F FLACE-ID F
EFFECT:  wone
INITIAL YHLUE:  wuwoe
DEZCRIFTION: FETURNE THE "NEMT" TOQHEM* DP THE TONEN "D TOFR "

FOHEDUVLED TO LERVE THE FUELE.
TO+FEN THE FUNCTIDN WILL RETUPN DME CHOSEM AT PRNDOM,

IFr THEPE 17 mMODRE THAN OHE AURILAELE
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNCT10OMN: TDTM,FLA CFsTO
FOIZ1ELE VWALUEZ: INTEGEPR
FRFARMETEFI: FLrcE-ID Fi Torew-1n T0I
EFFECT: wnDuE
INITIAL WALUES [xl

DEZCFIFTION: E~EcuTE: THE FLACE TDTI O THE IWCOMINE TOe EH.
THIS FUNCSTION IS LEFINED Ei THE USEP AT NET
LEFINTIDN TINE AND MRy UWIE THE ATRIEUTES OF THE

TorEn FRI In 17 COMRUTARTION,

FuMCTION: FLAZEND.FLA (TOH TV IETTo
FOIZTELE VALUEZ: wDHE
FRFAMETEFS: <eT OF TOmEw-TvRES TOF TVIETS
TREuzITION T
EFFECT: ENATOH (FLATOHTYFE
cAaLL FECDEL.FLA «F«TDH:
caLL ADDINTOL.TRE «T«TOt *
INITIAL MALLUE: W &

DEZCFIFTION: TRI1GGERT FLACE TD "SEND ' A TDrEM DF DNE DF THE
TYvrES 1 TOVTVFE ToO veenus1TION T A FARY DF A&

TRANSITION FIRINE,

FUNCTIONS PACDIZC.FLAFI]
POZZIELE VALUEZ: CUEVE DISTIFLINE
FREAMETEFZ: €FLmce-1D F
EFFECT: wNDME
INITIAL VALUE: wuseEP INFUT

DEZCRIFTION: User sPpecCIFlES ERcH FAU PUEVE DISCIFLINE.




TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

{IRSYSTEM: EXEC.NET MODULE: PLACE.TEN

FUHCTIDN:  FROENL.FLAF
FOCZIELE WRLLUEZ: wnYeEsER
FHFAMETEF.: FLace~1D F
EFFECT: w~oOne
INITIAL VALUE: HIGHWALLE

DEZCFIFTION: Ouewe FOUnND 'DME ®pB E/cH FRO,

FUNCTION:  TOTMDEF.FLA'F.
FOIZIELE YRLUEZY FunTION DEFINITIONS
FAFAMETEFZ: FfLece-1D F
EFFECT: w~OHE
INITIAL VALUE: zerD FuncTION

DEZCRIFTION: THE CALUE RETURNEDL IS & USEP DEFINED FUNCTION
HWHICH USEZT THE FLUNCTIONAL ATTRPIRLUTE SET AF 1TSS FARPRNMETER:
&HD RETUPNME THE TOVEW DELAY TIME,

FUNCTIDM: ENATON . FLRTD TVFE:
FOSZIBLE VHLUEZ: @& TOrEN-IDonULL
PAFAMETEF::  TDmen Tvyre TOH TYFE
EFFECT: w~DnE
IHITIAL VALUE: wuLL

DEZCRIFTION: SemmcHEs THE FEC. IF 1T FINDE @AM ENSELEL

AND READ Y TOFEN MATHIING THE TYEE FARSSEDS 1T FRIZES
THAT TOFEMN-ID.

R LA 1 IO =
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TIME-EXTENDED PETR! NET MODEL (MPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNCTION: FEGDEL.FLATOL «F
FDISTELE VRLUEZ: wOnNE
FHFAMETEF:Y  Torgn-1b TOl « FLRce-I1T F
EFFECT: INTMARY oFr = THTHARE oF 0 = TOH
INITIAL VALLE: M- &

LEZCEIFTIDNH: DELETES & TOrEn FRON Twe FEOD.

FUNCTION: EXTHMAF JFLACF
POZZIELE VHLUEI: <€ET OF DPIEREL rmI1ms +TO TWFEH:
TOVETYFE 15 A& TOrEN TVvFE« N IS A NOM-MNERATIVE
INTERER
FAFHMETEFI: FLace-I1T0 F
EFFECT: wone
INITIAL VALUES  wwuLL

TEZCFIFPTION: FETUPNE A SET OF DRIERD FAIRT 'TDHEN TYVFE"
NUNEEP OF TOMENS DOF THIS TYFE a&T ELACE Fo.

FUNCTION: SETTIM.FLAF«]
FDOIZIFLE VALUEZ: wODnE
FRAFAMETEFRZ: fLACE-ID FrINTEGEP |
EFFECT: TIMECF» =1
INITIAL VALUE: w-@

DEZCFIFTIDN: 3SET THE FLACE INTEPNAL CLDCr TO A CERTAIN TIME.
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

J2SYSTEM: EXEC.NET MODULE: PLACE.TPN

FUNCTION:  TI0r TIM.FLACGF:
FOIZIELE VALUEDL:  wNODHE
eFFexTs  TIMEF' = TIMEF: -|
FARAMETERZ:  FLACE-ID F
INITIAL VALUE: wN "

DEZCFIFTION: [EFINES A DECRERSING FLACE CLDSF FUNCTIDN,

FUMCTION:  EFTDY FLA.TOL o F
FDZZIELE VALUEZ: TFUE oe FALCE
FAFAMETEFRZ:  Tvorew-1r TOlsrLAcE-ID F
EFFECT: wone
INITIRL VHRLUE: FALIE

DEZCRIFTION: FeTuenus TRUE 1F TOl IS ENSELED &NDI RPEAT 1IN
THE FED.

FUNCTION: FPLAFIFE.FLFACF
FOZITELE WHALVE:: wOHE
FRAFAMETEF.Z: eLmcE~ID F
EFFECT: rfoP ERcH MEMEER T oF FDOUTIET.TFHWF
CHLL TERFIRE.TRR T,

DEZCPIFTION: Fpe aLL ARTS OUT FROM & ELACE TO A TRENSITIONE
CRLL & FLCTION WHICKH FIRES THAT TRANSITION IF IT 15 NWNOW
EMSELED.

FUNCTION:G FEQARDLLFLAF.TDH

FOZIIELE YALUEZ: wNOwME

FRFAMETEFZ: FL&cE-ID Fe TODrEN-ID TDt

EFFECT: IF EFTOL JFLH TD «F

CALL FLAFIFE.FLAYF

DEZCFIFTION: Arts & TOren TO THE PEQ AND URDATES THE PUELE.
Ifr THERE 1S MMy CHANGE TO THE SET OF ENKECED ACTIVE TORENST
FUNCTIONE APE CALLET WHICH CHECH ALL DUTIDING ARIS FRD
THIE FLACE AMND FIPE &My NEWLY ENAELED TRANSITIONS.
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TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPEC!IFICATIONS
=) .
\ESYSTEM: EXEC.NET MODULE : PLACE.TPN
FUNCTION: CGLITE.FLAOWFS
FOZIIIELE YALLEZ: FDZITIVE INTEGER
FAFAMETEF.: (LDCAL DUEUE 3T ('« FLACE-ID F
EFFELT: wouE
INITIAL VHLUE:  wouEe
DEICFIFTIDN: FETURNI THME SITE DF A DUEUVE.
FUNCTION:  FARODEL.FLAF
FOICIELE WALLMEZ:  wnone
FRFAMETEF .t  sLASE-ID F
EFFECT: TOF = GREVT.FLACFADF
CALL FEDARDIGFLA R« TGOt
1IF OIIZE.FLACFADGFI: O
TIME = TOTM.FLR P TO »
CALL FEWICH.MAZ YR TIME
INITIARL WALLE: N-#H
LETCFRIFTION: Teauszrers DHELT (FROWFY vo Tee FEC B0 CaLLING
FEOHID. THEW THE FRD IS PECIENED AND A FUNCTION CALLED
TD INZERT @ ENTR/ IN THe FEWD IF THeE FEU 15 NDT EnFTH.
FUC T10n: FLAEHAR.FLAF
FOICIELE VALUEZ:: w~OHE
FHFAMETEFI:  sLAaceE-ID F
EFFECT: CALL FAODEL.FLRF
INITIML VHELUE: N-R
LDE-CFIFTION: TmansFER:s THE NE~T TOMEN On THe FAD TO THE FEC.
THEN CRLLE FUNCTIONT WHMICH UFLDATE THE FAD anp FED @AnD mevE
REZULTANT STATE CHANGES TO TWHE TEFN,
—— . N .
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Module: TRANSITION.TPN

85

Module Description: Contains all functions necessary to "execute"

the TRANSITION data structure.

Impact Upon Other Modules: None

Data Structure Unique to Module:

Function Description:

TRANSITION
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

SUESYSTEM: EXEC.NET MODULE: TRANSITION.TPN

FUNCTION:  TRARENA.TRATSTFT
FOZITELE VALUEZ: sooLEmn (TRUECFALZEX
FAFAMETEFZ:  TERuzITION-ID Ts FIRING TEMFLATE TFT
EFFECT: wDnE
INITIAL WALUES: FALTE

DEZCFIFTION: CWHECHSE ALL OF TRAMIITION T INFUT FLACES MGAINET
TRANSITIDN FIPING TEMFLATES.,

IF EARSH FLACE HAT THE TOKEN REDUIRPED TD ENAFLE THE TRANZITION.

é THE FUNCTION RPETURNE THE “TRUE" &ND ALSD RPETURNE THE ENSELING
FIRING TEMELRTES TFTs FOR UZE IN THE FIRING SECUENCE ‘HOTE: TwWisz
FIRING MUST EE &t INDICISIFLE DFER~ATIDN,

FUNCTIDH:  TRAFIR.TFACT)
FOITIRLE WHLWEZ:  wonE
FHFAMETERZ:  TPAnszITION-I1D T
EFFELT: 1IF TRAEMA ' T«TFTs THENM
CALL FLAZEND.FLACTFT«T INTO ZET
CALL TTESEC T INTOI ZETs

DEZCFIFTION: EaACH TIME & TOHEM ENTERI THE "ENRELED—PERLD "
ETATES THIE FUNCTION IS CALLED Ev THE FLACE. IF & CALL TD
TEFHENR PETURNE “TRUE s THE TRANIITION IS ENAELED &MND TOrENI
APE CDLLECTED FPROM THE FLACES &ND FASSED A &~ SET TD TTE-EL.

FUMCTION: ADDINTOE . TRATTOH
FOZZIELE VALUVEZ:Y nDE
PAFAMETERZ:  TPanzITION I Te TtoOveEn-1p TOH
EFFECT: INTDVZET(T: = INTONZET:T» « TD:
INITIAL VALUE: N-A

DEZCFIFTION: Arprs & TOMEW TO THE END DF THE SET DF TOWEWS
COLLECTED FRDM THE FLACES.

U




TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

URSYSTEM: EXEC.NET

FUNCTION:  TTEXEC.TRACTs INTDHZET
FDIZIELE VALUEZ: wownE
FHFAMETEF::  TRANZITION-IT TeTorenw fET INHTOC JET
EFFECT: rom ERmCH TT 1w TTZ:TH
TDr =NEWTDH
FAZTO »=TT CINTO TET
TOt TWFETOt» = TTINTOH ZET

MODULE: TRANSITION.TPN

INITIAL VALUE:

DEICFIFPTION: "E-EcuTES”
CREATING THE NEN TOHEN AND CALLS
TOsEN TO THE AFFPOFRIATE FLACE.

FUMCTION: TTS.TRE T
FOZSTELE VALUES:
FARFAMNETEFR Z:
EFFECT: wOHE
INITIML VHLUE:

DPEZCFRIFTION:G FReETURPNE

FLr4C T IOM: TTRLA.TRA.TT?
FOZZIELE WHLUEZ:
FHFEMETEFR Z:
EFFECT: woOnHE
INITIAL VALLUE:

DEICFIFTIONS

F=TTRLA, TRRTT
CALL TRRIENDNTDHoF -
N-A

THE TRANSITION TDHEN TEMFLATYE E .

TRAMZITION 1L

EET OF TO»

TOH

FLACE-ID
EN-TEMELATE ID TT
NONE
ID TO WHICH & TOREN MUST EE SENT.

FETURPHE THE FLACE-

o FUNCTIDN TD SEND Two

SET OF TOHENW TEMFLATES
T

HULL SET

Et TEMFLATES.




TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

URSYSTEM: EXEC.NET MODULE : TRANSITION.TPN

FUNCTION:  TRAZERD.TRFACTOL «F
FDITJELE WALLE:: wnDHE
FRFAMETEFRT: Yorew-1n TOberLmczeEID F
EFFECT: CAHLL FLARCT.FLAFSTC: ¢
INITIAL VALUE: H-H

DEZCFIFTION: THE “"COMMUNICATION INTERFACE" EETWEEN TRANIITION

T =snr FLACE Fs "SENDZ" NEWLY CPRERTED TRrENF TO FLATE F.
] FUNCTION: TFTZ.TRACT
FOTTIELE YALUEZ: SET FD TRARNZIITION FIRING TEMFLATES

A FRFAMETERZ:  TRAnziTION T
! EFFECT: none
INITIAL VALUES w~NuLL SET

DEZCEIFTION: SEYT OF TRAMZITION FIRING TEMFLATES.




Module: TEPN.TPN

Module Description: Localizes functions concerned

with the overall TEPN structure and which require
manipulation of inter-nodal arcs.
Impact Upon Other Modules: none

Data Structures Unique to Moduie: TEPN
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TIME-EXTENDED PETR] NET MODEL IMPLEMENTATION SPECIFICATIONS

URSYSTEM: Exec.NET MODULE: TEPN.TPN

FUNCTIDN:  INTMARE  TRHTEFRN.
FODZZIELE WRLUEZ:  TEFN INTEPHAL MaRE s
FASRMETEFZ:  YeFrn~-1n TEFN
EFFECT: nDuE
INITIAL YALUE:  wone

DECCFIFTION:

FUNCTIDN:  EXTHMARL, TRFHYTEFN
FDIZIELE VYALUEZ:  TEFH E<TEPHAL MaRr TuE
FAFANETEFZ:  vern-11 TEFN
EFFECLT: wnDne
INITIRL WYALVE: 1"

DEZCRIFTION: ReETuRu:s THE currenT EXNTERHAL mMAee 1ns 0F THE TEFIS,
THIE FUNCTION M&G MLED FE UFEDL AT THE END DF THE PuUty TO DUTEUT
THE FINGML MEPS I,

FUNCTIDN: FEFFITAT, TRH . TEFN:
FOZZIELE YALUEZ:  nonE
PAFARMETEFZ:  tvern—11 TEFH
EFFECT: wonD
INITIAL VALUE: N-A

DEZCFIFTION: FETUSNT THE CUPPRENT DR FIMAL FERFORMANCTE STATISTICE
wwor & TEFH wmon,

FUNCTIDN:  TINFH.TFNT
FDIZIELE YALUE:: €e€T OF ®LACES
FRFEAMETEFZ:  tmanziviOn-10 T
EFFECT:  wOnE
INITIAL VALUE: wNuLL SEY

DEZCFIFTION: COPREZRONIE TO THE TRANSITION INEUT FUNCSTION
DEFINEDL B¢ THE FMIIC TEFNM DEFINITION AND RETURNE THE $ET OF

INFUT RLACES TO TRaWZITION T.
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TIME-EXTENDED PETR! NET MODEL IMPLEMENTATION SPECIFICATIONS

SURSYSTEM: EXEC.NET MODULE: TEPN.TPN

FUNCTION:  TOUTFM, TRMITS
FOTSIELE VALUEZ:  FuncTION FPROM TEFI{ T®aNZTITIONS

To fevs OF TEFN FLACES
FREMMETEFS: TPARuzivION-ID T
EFFECT: wNuLL SET
IHITIAL VALUE:

TEZCFIFTION: COPRENEFONDE TO THE TRANZITION FUNCTION DEFIHNED
¢ THE Eazic TEFH DEFINITION AHND PETURNE THE EET OF DYTFUTD
FLACEST ®ROn TRAuziTiOoNn T,

FUNCTIDHM: FDUTZET. TRH P
FOZSIELE VALUEZ: €ET OF TRANSITIONS
FPRFNMETEFZ: eLace~1p F
EFFECT: wnNONE
INITIAL %HLUES NLLL

i -
‘ DE-CFIFTION: GIvEH & FLATETIDT PETURNS THE SET OF ALL TRANZITIONS
TO HHICH DUTHERD AATE FROM THAT FLACE COMHNECLT.

FUNCTION:  FLAZET. TRNCTEFMD
FO:SIELE WHLUEZY SET DF FLACES ]
FRFAMETERS: TeERn-1Dn TEFN
EFFECT: wOnE
INITIAL VALUE: w~uLL SET

LEZCFIFTION:

FUNCTIODNS TRAZET. TFNCTERN
PO-ZIELE WALUEZ: SET DF TPANIITIONS
PAFAMETEFZ: TEFN—-ID TEFN
EFFECT: mnOME
INITIAL YALUE: wNULL SET

DETCRIFTION:




Module: TOKEN.TPN

Module Description: Contains all functions necessary to build

and delete tokens.
Impact Upon Other Modules: None

Data Structures Unique to Module:

Function Description:

TOKEN
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TIME-EXTENDED PETRI NET MODEL IMPLEMENTATION SPECIFICATIONS

UBSYSTEM: EXEC.NET MODULE : TOKEN.TPN

FUNCTION:  NEWTO: . TOV
FOIZIELE YALLEDIS vorew-ID
PAHFAMETEF.:  ~NDNE
EFFECT: woue
INITIAL YRLUE:S w-'e
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Chapter VI
A TEPN Model of a Disk Input/Output Subsystem

This chapter describes the application of the TEPN in
modeling the performance of a complex disk input/output subsystem.
Though this particular problem may, at first blush, appear as a
trivial problem not significant in demonstrating the TEPN's potential
for more general application, careful analysis shows that this case
study, which was motivated by a real rather than hypothetical
problem, requires a modeling methodology which meets the goals

; indicated in the Introduction to this Thesis. In particular, the
disk input/output system described below underscores the need for a
modeling methodology which can faithfully represent deterministic
behavior, process blocking, and the holding of multiple resources
by a process.

In describing the TEPN application, the chapter demonstrates
the TEPN to be both useful and significant: useful in that it has
sufficient modeling power to model many complex systems, and significant
in that it can model systems which cannot be faithfully modeled by the
queueing network model.

The chapter is organized into three major sections. The
first describes the basic disk I/0 configuration used throughout
the chapter and the modeling problems that emanate from this con-

figuration. The second section shows why the gueueing network model




95
’ is structurally inadequate for modeling the exact structure of the disk

subsystem when either disk sharing or parallel path allocations are
employed. The final section presents TEPN models of the serial and
parallel implementations of the disk I/O configuration under study.
These sections demonstrate that TEPN models can represent both the

serial and the parallel cases.

Description of the Disk Subsystem Problem to Be Modeled

Subsystem Configuration

Figure 6-1 illustrates the configuration of a small disk

subsystem representative of the type of disk input/output subsystem

t >
i Diax ®;
b
3 CONTROLLER A

]
| — o

Disc®e /
I! {
‘ Disx* s CONTROLEA. B
e/

DISK INPUT/OUTPUT SUBSYSTEM
FIGURE 6~1
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oconfigured to many data processing systems. Though the configuration
illustrated is very small, it is nonetheless representative of many
larger disk subsystems in that the same conceptual difficulties are
encountered in modeling the smaller configuration as are encountered
in modeling the larger configuration.®
In describing this subsystem for modeling purposes, it is
necessary to describe both the physical configuration characteristics
and the operational characteristics., The physical configuration
characteristics define the structure, or, by analogy, the syntax of
the system to be modeled. From Figure 6-1, we can note the following

physical attributes:

(1) the channels are crossbharred across both controllers,

with the result that either controller may be accessed by either
channel;

(2) each controller is attached to a finite and fixed
subset of the set of disk units and is part of a unigue path from
either of the channels to any disk units not shared with another

controller;

8 a "oconceptual® difficulty relates only to modeling power/capability.
We believe the TEPN is theoretically equipped to model any real disk
1/0 subsystem configuration. Whether a very large system can be
*physically” modeled depends more upon the limits of the implementation
of the model, and not the model itself.




(3) some disk drives may be shared by two or more con-
trollers (in this case, the second drive is shared) with the result
that there are multiple paths to each shared unit.

Controller/Disk Path Allocation Algorithm

In addition to the above characteristics, all of which
deal with the physical configuration of the disk subsystem, there
is another important, though diagrammatically invisible feature:
the controller/disk unit path allocation algorithm, or the algorithm
used to determine how to allocate and deallocate the controllers and
| disk units when handling input/output requests.

There are two.major path allocation algorithms in use.

The first, the serial algorithm, allocates an entire controller/disk
unit path to a transaction from the time the request is approved for
servicing until the transfer is complete. In this case, if a disk

unit has to perform a seek operation before the data transfer opera-

tion can begin, the controller will initiate the seek and wait for
it to finish, not accepting any other work during the idle period.

The parallel, or SEEK:READ/WRITE overlap algorithm, on the

other hand, only allocates devices when they are specifically re-
quired for a transfer or seek function. Once the controller has
initiated the seek operation, for example, the controller will be

available to service other transfer requests while it is waiting for

the disk to complete its seek operation. Wwhen the disk seek is
campleted, the controller must be reallocated to complete the
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path required for the actual transfer operation. Finally, when the

operation is complete, both units will be returned to the system

for allocation to other incaming and pending input/output requests.,

Difficulties Encountered When Modeling the Disk Subsystem with the
Queueing Network Model

The limitations of the queueing network model were discussed
in Chapter II. This section presents some of these limitations as
they particularly apply to the modeling of the disk subsystem problem
discussed in this chapter.

Browne, et al [Browne, et al, 1973] describe the represent-
ational problems inherent to modeling a complex disk subsystem (i.e.,

other than the trivial cases of single-controller, single-disk systems)

in which disk sharing and/or the parallel path allocation algorithm i
are enployed.9 In particular, they showed that the queueing network

model cannot model the exact system interactions and that when these

interactions are crucial to the model it is currently necessary to

model and simulate the subsystem using a discrete simulation language

model. Three of the difficulties which they cited are described

below.

9 Browne, et al, studied performance characteristics of a large

Control Data Corporation (CDC) system which included disk drives
especially equipped with the overlap algorithm.




Process Blocking. There are two types of blocking which
may happen with a system such as the one above., The first involves
simple queueing on the controllers, called primary blocking. In this

case, both of the controllers are busy, either initiating a seek or
performing a data transfer operation. In either case, the reguest
will be queued on the incoming path, and will have no effect upon
the disk units. Secondary blocking may occur when a controller

initiates a seek operation in a disk unit and goes on to service
amthér request, and is not free to begin a transfer when the seek
is completed, and no alternate paths are free. Intuitively, every

time that the overlap feature is utilized there is an opportunity

for secondary blocking to occur.

Holding of Multiple Resources. During its life cycle, each

disk request transaction must hold each of three resources: a chan~
nel, a controller, and a disk drive. Although the queueing network
model cannot direccly model the holding of multiple resources if the
resources are always deallocated in the exact reverse order of their
original allocation, a gueueing network model can be designed which
will faithfully model the system behavior. Such is the case with the
serial path allocation algorithm. If the parallel path allocation
algorithm is used, however, the controller and channel may be deal-
located and then reallocated in the middle of a transaction's life
cycle. This process cannot be faithfully modelad with a queueing
network model.
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Determinism and Multiple Configurations. The need for a

deterministic model versus a stochastic representation is difficult
to see in some cases in which the workload and system characteristics
are such that the stochastic model closely approximates the real

system. However, when either fine-grain accuracy is important,
the workload characteristics are not easily "summarized" into
stochastic functions, or the configuration may change, a dis-
crete, deterministic methodology is clearly more desirable and
sametimes essential. When fine-grain accuracy is important, the
deterministic model allows the analyst to model exact hardware
characteristics, rather than average service times. This may
be particularly useful, for example, for studying different disk
storage strategies (such as only using a certain block of tracks
on each disk drive). One particular advantage of a determin-
istic model is that it may more easily be trace—driven, thus
reducing the need to preanalyze and characterize the input work-
load. Finally, when studying a variety of configurations, it is
sametimes important to have a model which would exactly quantify
the impact of secondary effects (such as the increase or decrease
in secondary blocking) before the effects are understood enough
to characterize them stochastically.

TEPN Model of the Disk Subsystem with Serial Path Allocation

The description of the TEPN model of the disk subsystem
with serial path allocation is divided into three sections. The




first section deals with the model structure and configuration.

The second section builds upon that structure by defining the TEPN
model parameters which are characteristic of this particular model,
The final section concerned with the TEPN model of the disk subsystem
is a brief discussion of the model's operational characteristics.
Once a model has been defined for the serial path

allocation case, only a few modifications are required to convert
the model to represent the same disk subsystem with parallel path
allocation. These modifications and the final model are presented

in the chapter's final section.

Disk Subsystem Structure and Organization

The TEPN model structure for the disk subsystem was designed
in three stages. The first stage was to decampose the two—controller,
three—disk subsystem into three separate disk subsystems, each of which
contains the data paths possible for transferring data to and fram
one of the three disk drives. This system decamposition is diagram-
matically illustrated in Figure 6-2. Fram Figure 6-2 we can see that
the two controller three-drive disk subsystem can be modeled as a
cambination of two single-controller, single-disk subsystems combined
with one dual-controller, single-drive subsystem. Figures 6-3 and 6-~4
illustrate marked TEPN model structures which could effectively rep~
resent these two basic configurations. The reader should note that
the structure shown in Figure 6-4 is essentially identical to that
shown in Figure 6-3, with the exception that a controller may be

e A e we e mvm e . .
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drawn fram one of two nodes named CNTAVL instead of the single
ONTAVL node shown in Figure 6-3. The addition of the CNTBSY places
insures that the token is returned to one of two CNTAVL nodes after
the data transfer has been campleted. Table 6-1 presents the inter-
pretation of each of the places labeled in Figure 6-~3, Figure 6-4,
and other figures throughout Chapter VI; Table 6-2 presents similar
information for each of the transitions.

In order to model the entire two-controller, three-disk
system, we can cambine the models of the separate parts of the
subsystem into a single large model. This model is shown in
Figure 6-5., It is important to realize that this illustration only
shows the structure of the model. Fram this structure we can
determine only what "states" are possible ("reachable") or other
analysis possible with a nommal Petri net (since in the default

case the TEPN is equivalent to a Petri net). It is not possible,

however, to examine the model's time-resolved performance without
introducing TEPN sénantic (as opposed to structural or syntactic)
attributes.,

Although the model in Figure 6-5 represents the disk
subsystem, one can quickly abserve that a model built in this manner
would rapidly became very large and very cumbersame for all but the
simplest disk subsystems., Therefore, it is necessary to be able to
reduce or "collapse” this large structure into a simpler but
equivalent structure. An appropriate reduction method has been
suggested by both Petri net researchers and the TEPN definition.
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PLACE NAME PLACE INTERPRETATION/DESCRIPTION

DSKREQ A token at this place indicates that request for a data
transfer is waiting in the system.

CNTWT A token at this place indicates that the model or the
subsystem being modeled is in a wait state waiting for
a controller to became available.

CNTAVL The tokens at this place indicate the availability of
a controller in the system. In the cases of the models
in Flgures 6-3 and 6-4 these places are bounded to a
maximum of one token, That token then becomes repre-
sentative of the exact controller for which the place
is designated.

DSKWT when there is both a token at place CNTWT and CNTAVL,
transition Tl will fire and transfer a token to place
DSKWI. This place indicates that the model is in a
wait state for an available disk drive. In the case
of these models, of course, this disk drive is exactly
specified to be either disk number one, number two or
number three.

DSKAVL Tokens residing in this place indicate that a disk
drive is available for matching with the token at
DSKWT or in terms of the actual system being modeled,
a disk drive is available for matching with the

appropriate disk request.

DSKSEK Disk seek time is composed of both track seek time
and rotational delay.

DESCRIPTIONS OF PLACES WITHIN
TEPN MODEL OF DISK I/O SUBSYSTEM

TABLE 6-~-1




PLACE NAME

PLACE INTERPRETATION/DESCRIPTION

XFERCP

*XFERWT

CHNAVL
CNTRTN

*CNTBSY

The token at this place indicates that a data transfer
is under way and therefore that the disk/controller
path is in active state.,

A token at this place indicates that the transfer is
conplete. Note that the same transition that sends a
token to this place also sends a token to both CNTAVL
and DSKAVL, thus "deallocating"™ both the controller
and the disk that was in use during the transfer
operation,

For each request being processed by the disk subsystem,
there is a token resident at this place. when the transfer
is completed, the associated token is released with the
result that the local wait time of the XFERWT token is
exXactly equal to the combined total wait times for all
aspects of handling the request,

A token at this place indicates channel availability.

This place is only included in the model illustrated
in Figure 6-4 and is required in order to allow a
token to return to either one of the CNTAVL places.
In terms of the actual system, this would allow the
controller to be deallocated to the proper place.

If controller A, for example, had been allocated as
part of the original transfer path, then the token
at CNTRIN would travel through to the transition
which has as its output place the CNTAVL associated
with controller A; and, similarly, if controller B
had been part of the allocated path, at deallocation
time the CNTAVL place associated with controller B
would receive the token.

The two places with this name (CNTBSYA and CNTBSYB)
match with place CNTRTN to insure that the token in
ONTRTN fires the correct CNTAVL place.

Mot included in Figures 6-3, 6-4, and 6~5 but included in the

final models of the disk subsystem.
*Only included in Figures 6-4 and 6-5.

DESCRIPTIONS OF PLACES WITHIN
TEPN MODEL OF DISK 1I/0 SUBSYSTEM

TABLE 6-1 (Cont'd)
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TRANSITION INTERPRETATION OF FIRING L
T1 [Any] Channel allocated to queued disk regquest;
transaction processing cycle begins.,
T2 [Specified] Controller allocated to queued disk f

request transaction; disk request queued on
[specified] disk.

T3 [Specified] Disk allocated to queued disk request
transaction; disk seek activated; channel
deallocated pending completion of disk seek
operation.

T4 [Any] Channel allocated for disk I/O operation;
! disk I/O operation initiated.

TS End of disk request transaction life cycle;
channel, controller, and disk unit
deallocated.

6 [Specified] Controller returned to available
("idle") state.

*only included in Figures 6-4 and 6-S.

DESCRIPTIONS OF TRANSITIONS
TEPN MODEL OF DISK 1/0 SUBSYSTEM

-

TABLE 6~2
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Within the Petri net, the reduction is based upon properties of
token types or colors. Research concerning colored petri nets

was mentioned earlier in this Thesis (see footnote 6, page 43).
With the TEPN, this reduction capability exists in the form of
transition firing templates and the campanion token types and

token templates., Using the firing template concept, the model

of Figure 6-5 can be collapsed into a compact model which can
represent a disk subsystem of virtually arbitrary size and config-
uration complexity. The parameters necessary to form this reduction

are presented in the next section,

TEPN Disk Subsystem (Serial Path Allocation} Model Parameters

This section presents the TEPN model parameters which
are required to model the performance of the disk subsystem
presented in Figure 6~1 of this chapter. These parameters define
not only the characteristics of the controller disk interactions but
are also used to define the actual configuration of the disk sub-
system, The place attributes are primarily concerned, of course,
with time resolution, and therefore embody the attributes which
impact such things as disk seek time and data transfer times, These
attributes are the same regardless of the number of disk units or
controllers within the subsystem, They are also insensitive to the

g __.J




configuration of these disks or controllers, The transition firing
templates are used in conjunction with the token types to define
the configuration of the disk subsystem., In particular, the tran-
sition firing templates are used to insure that only legal controller
disk paths are allocated, Without the firing template, for example,
any controller token could be matched with any disk token to enable
a transition which would eventually result in a data transfer.

While this might be acceptable in some systems, it is not acceptable
in a trace-driven modeling enviromment where the specific disk units
are paired with disk requests and the performance of individual disk
drives and controllers is of concern to the analyst.

Transition Firing Template, The Transition Firing Template

determines the configuration of the disk subsystem by controlling
which controller tokens will match with which disk or disk specific
tokens while the net is in operation., Within the model of Figure 6-5,
the major reason for firing templates is to allow a method of matching
disk requests with the appropriate disk drive or unit and matching
disk units with controllers that can service them, For example, if

a disk request arrives for a transfer of data that is residing on, in
the real system, disk unit number two, we know that that disk unit
can be accessed through either controller A or controller B, However,
if another disk request arrives that must access disk unit number one,
this disk unit must only be paired with controller A, In Figure 6-5,
this problem is handled by having a separate model for each possible

controller/disk cambination, However, as mentioned before, such an
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approach would require a very cumbersome network in even a small
subsystem. A firing template that reguires that the input token
fran ONTAVL match a certain type token fram ONTWT, however, can be
used to guarantee that only the appropriate controller is matched
with the disk request. It is thus possible to "collapse® all of
the models for various controller/disk paths into a single model.
Therefore, the first firing template to be described describes
the match between controllers requests and disk units. Table 6-3
describes the firing templates required to model the actual con-
figuration shown in Figure 6~1, with serial path allocation;
Figure 6~-6 shows the new model structure that results when these
firing templates have been implemented. Finally, Table 6-4 presents
the formal model structure definition (in terms of Definition 4.1)
of the structure in Figure 6-6.

Place Attributes, The place attributes are divided into

three main groups: the attributes of the clock, the attributes

of the Place Active Queue (PAQ), the attributes of the Place
Enabled Queue (PEQ), and the set of Place Performance Functions
(PPF). Table 6~5 lists the values of each of these attribute groups
as required for modeling the disk subsystem with serial path allo-
cation. Since each of the attributes were explained in Chapter IV,
the table is presented with little additional explanation, beyond
the keys located at the bottam of the chart which define parameters
used. The functions used to define the TDIM place attributes are
explained in Table 6-6.
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DSKIONET = (P: T, Ir O)

where,

P = {cunavy, DSKREQ, CNTIWT, CNTAVL, DSKWT, DSKAVL,

DSKSEK, XFER, XFERCP, XFERWT}

T= {T1, T2, T3, T4, T5}

I (Tl) = {DSKREQ, CHNAVL} 0 (T1)
I (T2) = {CNTWT, CNTAVL} 0 (T2)
I (T3) = {DSKWT, DSKAVL, CNTAVL} 0 (T3)
I (T4) = {DSKSEK, CHNAVL} 0 (74)
I (T5) = {XFER, XFERWT} 0 (T5)

{CNTWT, XFERWT}
{DsxwT}}
{DSKSEK, CHNAVL}
{XFER}

{CNTAVL, DSKAVL, XFERCP,
CHNAVL}

TEPN Model Structural Definition
Disk I/0 Subsystem with Serial Path Allocation

Table 6-4




Token Attributes and Transition Token Templates. Token

attributes and, consequently, token templates are defined by the
specifications of the TEPN place and transition firing template
attributes, More specifically, the token functional attribute set
is derived primarly fram the set of functions necessary for camputation
of the token delay time mapping (TDIM) value for each place. These
functions can be identified in Tables 6-5 and 6~6 while the token type
attribute is derived fram the definition of the transition firing
templates, defined in Table 6-3. In addition to the token type and
functional attributes required of a token at its resident place,
many tokens are defined to carry additional attributes which are

| required by other places later in the network. These attributes,
which are defined as members of the token functional attribute set,

could be viewed as "messages" in the process of being relayed

fram thrir source to their destination. An example of this is the
attribute "SIZ" which (from Table 6-5) is required to campute the
data transfer time for each request, shich is the TDIM value for a
token residing at place XFER. The original source of this attribute
is the token fram place DSKREQ, where each disk request is initi-

ated, In order to insure that this piece of information is available

at place XFER when it is needed, a "functional attribute transfer
path" is established and the attribute is passed along fram token to

token until it "arrives" with the appropriate token at XFER.




S-9 31qel
UOTILOOTTY YIed [eTISS YITM uejshsqns 3STQ JO TOPOW NJFL
SOINUIAIIY 90eTd NJEL

f0ARIT USYOI Ubym WILNAS o (FP4-MI) SEVY = (%01) T4y

03 soe7d 1® EGATII® USYOJ SWY] WOXJ SWY} ITePAm [PIOT = E: UOTIOUNI BWT] [PATIAIP-I3IUT "MUVINI = ;o.:ﬂmm

adk31 Aq ‘suayoy Bburitem Aq soerd JO UOTILZI[(TIIN = Tlingy S403 313.—:!1

(A1PX IndL) »awy)y atrm 1ad gndl = WiNaLe J0SSAD014 AITUTIULE

adki uanol Aq ‘aoetd pasged aaey eyl sueyny [PI10) = .—.?_._.0 PAATAS-ISIT J-AW0D-~ISITd,

vy o 215 = (o', antIovy
INdd » dI o=a % mmH 4 dNIIX
AﬁE » SIOIN o=a » Nm.mo.m v IMIIIX
- € dI uioﬂmmua € ¢dI v ¥Idax
- 3 dI 9 (303) N.“._ua 3 mmH A4 NISNSa
111N 13 dI o=a € mmH v TAYISAa
qIndd, L SIOIN @=a » Nm.mUm 4 LMISA
oaqH.S 4 dI o=a 4 mmH v TAYIND
3 mm.Sma . SIOIN o=a » Nm.mo.m ¥ JIMIND
o104 s SDM oM Ea S v Oaisa
39S add 0 JE AT o) WIAL aNg)  os1d | X9010  oWeN-d

Oad ovd




FUNCTION MNEMONIC - DESCRIPTION

SRS

Request Inter- INTARR Returns the amount of time
‘ Arrival Time prior to releasing the next
1 token from place DSKREQ

-

Request Number REQNUM Returns unique identifier
assigned to each new disk
request transaction.

Data Transfer Size SIZ Returns number of units of
data to be transferred to
this transaction.

Data Track Address TRK Returns the disk unit track
address of the data to be
transferred,

Disk Position FOS Returns the current track

address of the disk unit
read/write head.

Disk Seek Time SEKTIM Returns the disk track-to-
track seek time. ﬁ

ﬁ TOKEN FUNCTIONAL ATTRIBUTES
! DISK MODEL OF DISK I/O SUBSYSTEM

TABLE 6-6




. The token definitions required to represent the disk I/0

subsystem are presented in Table 6-7. Note that several of these
definitions show tckens with "camposite" token types. These types
are actually the concatenation of several types and are used to
preserve the identity of the resources allocated to each transaction
as the model is executed. The notation used in this table, while
new, is intended to be somewhat self-explanatory. All definitions
employed standard set nctation. In the case of camposite token
types, lists enclosed in square brackets are single type elements.
Also, when aone of the elements of the damain set is itself a
set, the implication is that any of the "inner" set may be matched
with any other elements in the camposite type to form a "legal®

ordered re-tuple.

The final information required to define the tokens is the
transition output token templates. These are implied by the
definitions of Tables 6-6 and 6-7 and are formally presented in
Table 6-8, For brevity, the table utilizes a functional notation
to indicate transfer of type and attribute information. The

notation should be clear with the possible exception of the

-« 7T

notation TYPE = TYn (P), where n is a digit and P is a place
name. This indicates the particular element of the ordered

n-tuple which forms a canposite type of a token fram place P.
The particular type value referred to can be determined fram

l Table 6-6.
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TEPN Model of the Disk I/O Subsystem with Parallel Path Allocation

In order to effectively model parallel path allocation,
the model of Figure 6-7 must be altered to allow for a) the return
of the controller to the available state for the (NTAVL place
during the time period taken by a disk seek operation; and, b) the
reallocation of a controller fram CNTAVL prior to the cammencement
of the transfer operation but following the campletion of the disk
seek operation, The exact implementation of this required modification
to the original model depends upon the level of detail required for
the study. In most cases, for example, parallel path allocation could
be accurately modeled with the simplifying assumptions that
(1) the controller is autcmatically deallocated at the beginning
of every disk seek operation, and, (2) once the disk
seek operation is complete, the transfer will begin as soon as the
controller token is available. Assumption 1 does not take into
account the case in which there is no disk seek time. In this case,
the algorithm would probably be defined such that the controller would
not be deallocated and the transfer operation would be allowed to
begin immediately. This assumption, however, is not considered
significant except in cases where very minute detail of modeling
is necessary, since this assumption would be expected to have little
impact upon the system performance. Furthermore, in the case where
the disk seek is indeed zero, one could assume that transition T-4

would immediately fire, thus causing the immediate reallocation of
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the lost controller. The second assumption is certainly the more
significant of the two assumptions in that it ignores the extra
latency or rotational delay time caused when a controller is not
immediately available to service a disk drive that has just campleted

10 Therefore, in a system which is extremely busy,

a seek operation.
in terms of request volume, and which has many disk units attached
to the same controller, this assumption could result in inaccuracy
of the results. In cases where the above assumptions are considered
unacceptable, a model may be further modified to represent the
interactions at even the most detailed level. The more camplex model
is not included in this Thesis as it is not reguired to illustrate
any special capabilities of the TEPN model.

Differences Between the Serial and Parallel Model

If the two assumptions mentioned in the last section are
made, only one strucural modification is required to convert the model
into an accurate representation of the disk subsystem with parallel
allocation. This modification is to add an output arc fram transition
T1 to places CNTAVL and a corresponding input arc to transition T4 fram

place CNTAVL.

10Addit.ion of an autamatic "average latency time" to the TDTM

camputed transfer time would only partially solve this prablem
since it would be based upon an assumption of a known pattern of

latency delays which may not be the case,
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This modification cause the controller to be returned to the
CNTAVL pool until it is required by another (or the same, at later
time) transaction. The new marked structure is illustrated in figure
6-7. The TEPN "structure definition® is also presented, in table 6-9.
This structural change requires a slight redefinition of the transi+ion
firing and token templates. The new definitions are shown in tables

6-10 and 6-11.

Execution of the Disk Subsystem Model

Figures 6-8 thorugh 6-13 illustrates an execution sequence of
the model of figure 6-7 in which a disk request is traced through
its "life cycle™ within the network. Although the diagrams are
somwhat self-explanatory, additional notes are included to help the
reader follow the example. For best understanding, it is suggeted
that the tables prensented earlier for the parallel path allocation
disk subsystem model be followed closely through the execution
cycle. Table 6~12 presents initial valves for each of the token
functions to be used in TDIM cawputations. The cycle is hroken
down into six steps, as follows:

1. New Request Arrives (fig 6-8) at place DSKREQ, specifying

the dirve required (DSKNWM), (which is the token's type attribute)
data track address (TRK}, the amounnt of data (SIZ), and a request
number (RECNUMB). Example attributes are shown in table 6-12,

e

PRT ZINU
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DSKIONET = (P, T, I, O)

where,
P = {CHNAVL, DSKREQ, CNTWT, CNTAVL, DSKWT, DSKAVL,
DSKSEK, XFER, XFERCP, XFERWT}
= {T1, T2, T3, T4, T5}
I (Tl) = {DSKREQ, CHNAVL} O (T1) = {CNTWT, XFERWT!
I I (T2) = {CNTWT, CNTAVL} 0 (12) = {DSkwT}
E I (T3) = {DSKWT, DSKAVL} 0 (T3) = {DSKSEK, CNTAVL, CHNAVL}
I (T4) = {DSKSEK, CHNALL} O (T4) = {XFER}
I (TS5) = ({XFER, XFERWT} 0 (T5) = {CNTAVL, DSKAVL, XFERCP,

CHNAVL}

TEPN Model Structural Definition
Disk I/O Subsystem with Parallel Path Allocation

Table 6-9
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2. Channel Allocation (fig 6-9) of a channel to the request.

3. Controller aAllocation (fig 6-10) of controller "A" from

place CNTAVL. Because of the token template defined for transition
T2, only controller "A' can be used in cambination with DSKNUMB "1"
to enable T2, Note that the type of the output token from T2 to
ONKWT is a camposite type indicating the enitre channel-controller-
disk path being utilized.

4. Disk Allocation / Release of Controller (fig 6-11) of disk

"1" and controller "A', Because the parallel path algorithm, the
controller is not retained during the disk seek time.

5. Disk Seek (fig 6-12) according ot the pre-defined TDIM in which
WAIT = SEKTIME * abs(TRK-FOS). =lms *(180-100) =80ms, using values
fram Table 6-12,

6. Transfer Begins (fig 6-12) and controller and channel are

both reallocated to the data transfer request. The transfer time
is camputed according to the TDIM defined for place XFER, In this
case the wait time would be: SIZ * RATE = 50) block =25 ms.

7. Transfer Complete (fig 6-13) and all resources deallocatid. Note

merger at transition TS with place XFERWT. This place is only for
recording the total wait time fro request processing, which for
this example would be total of the wait time, or: 50 ms + 80 ms=
130 ms,
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Further analysis of the model and experimentation with various
initial markings will quickly reveal the versatility and the struc-
tural integrity of this model, and of the TEPN model in general.

Token Generation. The final question that will be discussed

in this Thesis concerning the example TEPN model is that of devi-

sing a method for continuous "generation® of input tokens, such as
the tokens which would came to the DSKREQ place in order to evaluate
the subsystem performance. While an in-depth discussion of this topic
is not appropriate at this point, a brief presentation of some of

the natural altermatives offered by the TEPN is again illustrative

of the potential that the methodology has for CPE modeling.

In particular, we identify three ways that the TEPN can handle this
need:

1. Closed Network

By drawing an arc fram transition T5 to place DSKREQ, figure
6-6 can be transformed into a closed system which will continue to
"recycle” its "workload" indefinitely. In this case, the parameters
of DSKREQ tokens could be either drawn fram a randam field or kept
canstant (to represent, for example, known "typical®™ requests). Figure
6-14 illustrates the resulting structure.

2. Open Network/Randamly Driven

Figure 6-15 illustrates a second implementation method in which
a special "“token generator"™ place has been added. The net would be
initialized by inserting a token at place TOKGEN. After some deter-

i
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mined delay time, transition T would fire, sending a token to DSKREQ
and returning a token to TOKGEN. The token template could be designed
to either retain standard parameters or to chose new parameters
either randomly or fram a sepdarate source,

3. Open Network/Trace Driven

The model of Figure 6-8, finally, could be used as a trace dri-
ven model by simply defining the token template processor such that
a "READ ATTRIBUTE" operation used to obtain an attribute value for
inclusion in a new token could be an input fram any source, inclu-
ding a file of actual system transactions. Note that this imple-
mentation does not require any modification to either the TEPN

Definition or to the implementation specifications., This implemen-

tation is illustrated in Figure 6-~16,
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CHAPTER VI

SUMMARY AND CONCLUS IONS

The primary result of this research is the definition of
a new CPE model ing structure, the Time-Extended Petri Net, which
effectively retains logical synchronization and concurrency
characteristics of systems.

Cost effectiveness is an imborfanf consideration when
evaluating the potential of any CPE methcdology. A further result
of this research, therefore, is the demon§+ra+ion of the feasibility
to (1) develop an efficient computerized TEPN modeling system, and
(2) use the TEPN in analyzing practical CPE probiems. The initial,
though [imited results inciuded in this thesis demonstrate that the
TEPN is applicable to at least a small class of problems. More

research and testing will be required before the TEPN can be

declared to be a general CPE fool; this research is underway at
this time.

At this point, the use of the TEPN as a modeling tool
for many problems is still a cumbersome task. There is still

considerable work ahead before the Implementation becomes efficient

and sufficiently user oriented to allow cost effective modeling of

large system evaluation problems. However, the resulits of this

Thesls seem to Indicate the potential for building and evaluating
effective models of such systems at a fraction of the cost of

building full-scale simulation models.
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Appendix A |

Decomposition of a TEPN Model into a Petri Net
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One of the stated advantages of the TEPN structure is

that it has the flexibility to "decompose" into a Petri net without

any alteration of the basic model structure. Therefore, the same
model could be used to study many theoretical properties (such as
state reachability) using the identical model.

Building a "default" Petri net consists of steps:

(1) Define all places wiT;in the net with the standard

default parameters;

(2) Define all transition firing and token

TEPN Place Default Parameters

On an operational level, the TEPN and Petri net place 1
differ primarily in that (a) "time" is resolved within the place,
and (b) the TEPN place is capable of ordering its resident tokens
and using this ordering to control the exit of tokens to its
output transitions. In order to decompose a TEPN place so that it
is operationally equivalent to the standard Petri net place, there-
fore, one must define all attributes such that the above two
differences are eliminated. Such a set of parameters is shown in
table A-l.

The net effect of the default attributes is to:

(1) remove time resoiution from the place by "deacti-

vating" the clock to a constant zero state,




145

(2) remove the concept of "token delay time" by defining
the TDTM as a constant zero function,

(3) define the place marking as a "bag" or set of tokens
rather than a queue or sequence by defining a queueing discipline
which has an infinite number of processors resulting in elimination
of any queueing delays, and,

(4) define the place as "unbounded," in accordance with
the generalized Petri net definition.

If all places in the structure of figure 6-6 were defined
with default attributes and if transition firing templates were left
undefined, the net “performances" would completely revert to a Petri
net (although the internal structure would still be a TEPN, as
evidenced by the retention of a set of place performance functions.

TEPN Transition Default Parameters Default Transition Firing Templates

The Petri net fransition has no mechanism for controlling
token flow other than the standard enabling rules. Therefore, the
TEPN transition default parameters must be defined such that the
enabiing and firing rules conform to the standard: if a token exists ?

at each input places, regardless of the tokens' attributes. Therefore,

the default transition parameter set includes a nufi firing template

conforming to definition A.1, below.
Definition A~), Null TEPN Transition Firing Template

A TEPN transition firing template is said to be nuifl if
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the transition will be enabled by any arbitrary com-
bination of input tokens as long as there is at least
one token at each input place. In functional terms, for

any transition T,

TFT(T) = "ENABLED" if LIMig O for every Pi in I(T)

where, LIMi is the local internal marking of place Pi.

Default TEPN Token and Transition Token Template

The only TEPN token attribute which is supported by the

Petri net is the token type , or "color". Therefore, all token

templates within a default transition are restricted to defining a

simple colored token. As with the TEPN, however, there is stili con-

siderable flexibility as to how the color is determined.
The default TEPN token is defined by definition A~2. Based

upon this definition, the TEPN Transition Token Template will only be

concerned with they token type or color.

Oefinition A-2. Default TEPN Token
The default TEPN Token is a TEPN token with a null token

Functional Attribute Set (FAS).




PAQ Queue Bound

PAQ TDTM

PEQ Queue
Discipline

PEQ Queue Bound

Place Performance
Functions

D = F@(token)

1P

o

TPUT

QMAX

QSIZE

Attribute Value Meaning/Remarks
CLOCK INACTIVE Place clock is a constant
zero
PAQ Queue iP "Infinite Processor" Queue
Discipliine disciplines
oo Iinfinite Queue Bound

Constant zero delay time
function

"infinite Processor"
discipline

Infinite Queue Bound

Total number of tokens
throughput

The largest queue size
attained during run

Average size of queue
from sample

Place Attributes of "Default" Place
Table A=\
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